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Abstract

Microbes acclimate to changes in substrate availability by altering the number of transport-

ers on the cell surface, however there is some disagreement on just how. We revisit the

physics of substrate uptake and consider the steady-state scenario whereby cells have

acclimated to maximize fitness. Flux balance analysis of a stoichiometric model of Escheri-

chia coli was used in conjunction with quantitative proteomics data and molecular modeling

of membrane transporters to reconcile these opposing views. An emergent feature of the

proposed model is a critical substrate concentration S*, which delineates two rate limits. At

concentrations above S*, transporter abundance can be regulated to maintain uptake rates

as demanded by maximal growth rates, whereas below S*, uptake rates are strictly diffusion

limited. In certain scenarios, the proposed model can take on a qualitatively different shape

from the familiar hyperbolic kinetics curves, instead resembling the long-forgotten Blackman

kinetics.

Author summary

The mechanics of resource-limited microbial growth is a fundamental focus in cell biology

and biophysics. Physiological acclimation plays a key role in microbial growth rate depen-

dence on the availability of a limiting resource, but progress has been mostly rooted in

theoretical studies due to a lack of relevant experimental data. In light of new quantitative

proteomics data which disagree with current models, we revisited the physics of substrate

transport and propose a model, based on a different set of assumptions, which applies to

the steady-state scenario. Depending on the design of the transport system, the proposed

model predicts that microbial growth rate dependence on substrate availability can take

on a familiar hyperbolic shape (e.g., Monod) or a piecewise linear shape, not unlike the

Blackman kinetics model which fell out of favor long ago. The sharp transition appears

from a discontinuity which marks a critical substrate concentration, above which physio-

logical acclimation can sustain maximal growth rates, and below which diffusion is strictly

limiting. We implemented the model in Escherichia coli using a combination of flux bal-

ance analysis, molecular modeling, and quantitative proteomics data. Predicted kinetics
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closely matched experimental observations across a range of carbon substrates, and the

model can be easily implemented for other systems.

Introduction

Microbial growth rates may be limited by catalytic rates or by the rate of diffusion of resources,

which are often supplied with some irregularity in the natural environment. As the availability

of nutrients and organic substrates change, various metabolic and physiological acclimation

strategies can be leveraged to maximize growth rate and remain competitive. For instance,

flexibility in the molecular composition of biomass can be used to compensate for resource

deficits by adjusting demands through holistic changes in elemental stoichiometry. Given the

dynamic nature of microbial ecosystems, these acclimated phenotypes are probably the norm

rather than the exception.

An important physiological acclimation strategy to maximize growth on a limiting resource

is to alter the number of transporters on the cell surface; however, two conflicting views of

how microbes implement this strategy have emerged (Fig 1). One view (“Model A”) predicts

that, at very low substrate concentrations, the diffusive flux is low and therefore very few trans-

porters would be required to match uptake rates to encounter rates. As substrate concentra-

tions increase, uptake rates become limited by the number of transporters, so more are

synthesized [1–8]. Another view (“Model B”) predicts the opposite; at low substrate concentra-

tions the encounter rate is limiting, so high transporter abundance is favored, while at higher

concentrations resources are allocated for use elsewhere in the proteome [9–13]. Considering

the evolution of these two divergent views, it is interesting that both evolved under different

assumptions from the same underlying physics [14].

The relevant data (i.e., the abundance of transporters across a range of substrate concentra-

tions) which could resolve, or even reconcile these opposing views has, until relatively recently,

been lacking; however, progress in proteomics has enabled the direct quantitation of the

majority of expressed proteins in model organisms like Escherichia coli K12 [15], including its

transporters. In glucose fed batch cultures and chemostats across a range of dilution rates,

Fig 1. Observed glucose transporter abundances across a range of glucose concentrations ([15]; data plotted with

permission from the authors). Qualitative predictions of Models A and B are shown to illustrate their expected behavior.

https://doi.org/10.1371/journal.pcbi.1008140.g001
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transporter abundances qualitatively matched neither of the two previous model predictions

(Fig 1). This finding suggests perhaps that another interpretation of the underlying physics be

posed which explains these observations. For instance, prior approaches in line with Model B

have leaned heavily on resource allocation, whereby a tradeoff is established by the fraction of

the proteome dedicated to substrate transport [8–12]. This fraction was assumed to modulate

both the affinity and the maximum uptake rate, often requiring large proteome investments in

transport (e.g., up to 77% of total protein; [8]), however the total contribution of all 90 trans-

porter proteins on both the inner and outer membranes and their associated periplasmic bind-

ing proteins to the Escherichia coli K12 proteome was 11±3% across 22 different growth

conditions, with any particular transporter complex contributing much less [15]. Clearly the

allocation of resources to transport is not without cost, as we will explore, but may offer con-

founding predictions when modeled as a linear constraint on kinetic parameters.

We consider the simplest case of a single cell growing on a single limiting substrate S (Fig

2). The rate of change of the cell quota Q of element X (mol X cell-1) can be expressed in terms

of S as

dQ
dt
¼ vðr; n; S;DÞYX=S � mQ � MQ; ð1Þ

where v is the substrate uptake rate (mol S cell-1 s-1, r is the cell radius (m), n is the number of

transporters (cell-1), D is the molecular diffusivity of the substrate (m2 s-1), YX/S is the yield

(mol X [mol S]-1), andM is a non-growth associated maintenance requirement (s-1). Over the

time-average in a continuous culture, dQdt ¼ 0, so we define the steady-state growth rate μ (s-1)

Fig 2. Conceptual diagram of substrate uptake. A substrate molecule diffuses down a gradient in concentration from S1 toward the cell surface S0. The

molecule encounters an unoccupied transporter at a rate no higher than the catalytic rate, where it is subsequently transported to the interior SI and

metabolized to generate reducing power or to synthesize new biomass. Coupling of a mechanistic model of substrate transport with flux balance analysis

of a stoichiometric model of the metabolic network allows computation of yields, optimal uptake rates, and optimal transporter abundances.

https://doi.org/10.1371/journal.pcbi.1008140.g002
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as

m ¼
vðr; n; S;DÞ

Q
YX=S � M: ð2Þ

The experimental data of Shmidt et al., [15] provide the opportunity to test and calibrate a

model of nutrient uptake and transporter allocation since r, n, S, D, and μ are simultaneously

known. Here we base the functional form of v on the model of Armstrong [4], an approxima-

tion to the model of Pasciak and Gavis [2] (described in detail in the Model section). To close

the model according to Eq (2) we must also constrain the yield YX/S and maintenance M; we

do so by employing a genome-scale metabolic model of Escherichia coli K12 [16].

In short, we will demonstrate that the model is compatible with the quantitative proteomic

data of Schmidt et al., [15] under the assumption that allocation to transporters is optimized to

two, theoretically anticipated regimes: (i) a regime where internal synthesis rates are the limit-

ing factor and (ii) a regime where diffusive encounter with the resource is the limiting factor.

Results

Conceptual model

For simplicity, we consider a single cell of radius r suspended in an infinitely large volume,

containing a single nutrient at bulk concentration S1 (mol m-3; Fig 2; Table 1). The subscript

1 denotes that the concentration is that of a volume an infinite distance from the cell surface.

A crude description of transport of an extracellular substrate at a concentration at the surface

of the cell S0 (mol m-3) across the inner membrane via a transporter E to the intracellular space

at a concentration Si can be expressed as the two-step reaction

S0 þ E !
k1 ES !

kcat Eþ Si; ð3Þ

where k1 is the molecular encounter rate with a transporter (mol m-3 s-1) and kcat is the cata-

lytic constant or turnover number, the rate of dissociation of the transporter-substrate com-

plex ES in the transport process (mol transporter-1 s-1). It should be noted that k1 represents

not only the encounter rate, but specifically the encounter rate of molecules colliding with the

transporter with sufficient energy to overcome a reaction energy barrier. Thus, the back reac-

tion, often denoted k−1, is implicit. Also note that kcat should be interpreted to be the maxi-

mum apparent catalytic rate in vivo, rather than the constitutive in vitro kcat [17].

At high substrate concentrations (S0!1) when the molecular encounter rate with each

transporter far exceeds their maximum catalytic rate (k1� kcat), effectively all transporters are

occupied, that is, in the process of carrying out a transport reaction. For consistency with pre-

vious studies, we refer to this limit as the porter limit, denoted by the superscript P. At the por-

ter limit, the maximum uptake rate vPmax is set by the catalytic rate of a number of transporters

n,

vPmax ¼ nkcat ð4Þ

However, another limit is reached as transporter abundances increase further; we refer to

this limit condition as the growth limit vGmax, denoted here and elsewhere by the superscript G.

In this state, increased uptake capacity would exceed metabolic demands and thus the excess

transporters would be proportionately inhibited, so as not to violate dQ
dt ¼ 0. The maximum

growth rate under optimal conditions can be set by a variety of internal bottlenecks (e.g., pro-

tein translation rates, oxygen diffusion, metabolic choke-points, molecular crowding,
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temperature), which are manifested by differences in metabolic and physiological designs in a

particular environment. The growth limit represents a specific instance of vmax where cells

have acclimated to growth at high nutrient concentrations by adjusting the number of trans-

porters to some optimal abundance n� = nG which supplies substrate at the rate required to sat-

isfy the maximum growth rate. In this instance, the porter limit and growth limit converge.

Kinetic model

A model of the dependence of uptake rate kinetics on changes in cell physiology was previ-

ously developed [2]. In subsequent work, Armstrong [4] provided a convenient approximation

of Pasciak and Gavis’ quadratic model, resembling an expansion of the hyperbolic Michaelis-

Menten model v ¼ vmaxS1
ksþS1

. In this approximation, the apparent half-saturation concentration

ks = kcat/k1 can be described by the sum of two limits: a porter limit kPs and a diffusion limit kDs .

Armstrong’s model incorporates similar dynamics to the quadratic model, but uses the

Table 1. Parameters used in this article.

Parameter Description Units

α Substrate molecule capture probability dimensionless

μ Growth rate s-1

νD Diffusive molecular encounter velocity m s-1

νP Membrane transport velocity at the porter limit m s-1

ϕ Shape coefficient dimensionless

A Transporter capture area m2

D Hydrated molecular diffusivity m2 s-1

fmax Maximum fraction of cell surface area for transporters dimensionless

ks Half-saturation concentration mol m-3

kPs Half-saturation concentration at the porter limit mol m-3

kDs Half-saturation concentration at the diffusive limit mol m-3

kcat Catalytic rate of an individual transporter mol s-1

lR Reaction-diffusion characteristic length scale m

n Number of transporters cell-1

nmax Maximum number of transporters cell-1

nG Number of transporters of replete batch-acclimated cells cell-1

n� Optimal number of transporters for any phenotype cell-1

n�G Optimal number of transporters at the growth limit cell-1

n�D Optimal number of transporters at the diffusion limit cell-1

Q Cellular biomass quota mol X cell-1

r Cell radius m

S1 Ambient substrate concentration mol m-3

S� Nutrient limitation concentration mol m-3

SlbG Lower bound of the n�G feasible domain mol m-3

SlbSA Lower bound of surface area limitation mol m-3

SubSA Upper bound of surface area limitation mol m-3

Sh Sherwood number dimensionless

v Uptake rate mol s-1

vmax Maximum uptake rate mol s-1

vGmax Maximum uptake rate of replete batch-acclimated cells mol s-1

YX/S Biomass yield mol X [mol S]-1

https://doi.org/10.1371/journal.pcbi.1008140.t001
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simplifying assumption that cell radii are much smaller than, or much larger than a character-

istic length scale of the reaction-diffusion process lR ¼ vPmax=k
P
s �ShD. A discussion on the

validity of this assumption can be found elsewhere [6]. Thus, we apply Armstrong’s approxi-

mation

v ¼
nkcatS1

kPs þ kDs þ S1
; ð5Þ

where kPs is the effective half-saturation concentration at the porter limit, which is independent

of the number of transporters,

kPs ¼
ffiffiffiffi
A
p

r
pkcat

4aAD
ffiffiffiffiffiffi
Ap
p : ð6Þ

Critically, α represents a dimensionless probability that a substrate molecule which enters the

vicinity of the transporter catchment area A (m2) is captured and transported. This parameter

indirectly accounts for the fraction of collisions which exceed the activation energy of the

ligand binding reaction, without any explicit knowledge of the magnitude of this barrier or the

energy of the collision,

a ¼
n
ffiffiffiffiffiffi
Ap
p

4D
: ð7Þ

We derive this probability α by equating the velocity (m s-1) of molecular transport across the

membrane when all transporters are saturated (νP at the porter limit; [4]) to the velocity of the

nutrient molecule diffusing towards the cell surface (νD; [14]), which is dependent on the

hydrated molecular diffusivity of the substrate D (m2 s-1), the cell size, and the advective veloc-

ity of the cell u (m s-1),

nD ¼
D
r
þ
u
2
: ð8Þ

Thus, motility is inversely proportional to the effective half-saturation concentration at

the porter limit, by increasing the encounter rate k1 relative to the catalytic rate, as can be

seen from Eqs (6), (7) and (8). The effective half-saturation concentration at the diffusion

limit kDs is not only cell size-dependent, but is dependent on the number of transporters, such

that

kDs ¼
nkcat
�ShDr0

; ð9Þ

where ϕ is a dimensionless cell shape factor and Sh is the dimensionless Sherwood number,

which relates mass transfer by advective shear forces to those of the viscous forces. We

include ϕ and Sh for completeness, but have excluded any explicit treatment of their effects

on nutrient transport in this article by assigning both of their values to be 1. Both turbulence

and cell shape influence the encounter rate, and a detailed discussion on their effects on

nutrient transport can be found elsewhere [18, 19].

Acclimation

Afforded sufficient time, microbial isolates grown under viable conditions will acclimate both

metabolically and physiologically so as to maximize growth rate (e.g., [20]). Given this obser-

vation, it follows that uptake rates should be matched as closely as possible to vGmax by regulating

transporter abundances optimally. Maintenance of a number of transporters in excess of this
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optimal value would result in the intracellular accumulation of the substrate and allosteric

feedback inhibition of metabolism and sub-optimal growth. Conversely, maintenance of an

insufficient number of transporters would result in porter limitation, which is also a sub-opti-

mal growth state. If both of these statements are true, then an optimal number of transporters

n� should be predicted over two concentration intervals; a zero-order interval over which

uptake rates may be maintained at vGmax, and a first-order interval over which uptake is limited

by the substrate concentration dependent diffusive flux. A schematic of these transitions is

given in panels A and C in Fig 3. At zero-order,

v ¼ vGmax ¼ n
Gkcat ¼

n�kcatS1
kPs þ

n�kcat
�ShDr þ S1

: ð10Þ

Fig 3. Schematic of steady-state nutrient acclimation. A)—Optimal transporter abundances n� (solid green line) lie at the porter limitation (blue shaded region)

boundary. All points above and below this boundary fail to maximize growth rate; for all points below, the uptake rate is sub-maximal; for all points above, some

transporters are unoccupied. Over an interval of bulk substrate concentrations S1� S�, this boundary is met with diffusion limitation (orange shaded region),

where the catalytic rate exceeds the encounter rate; as concentrations exceed S�, the porter limitation boundary transitions to an internal growth rate limit (yellow

shaded region), where the catalytic rate exceeds the rate of some downstream reaction. B)—For smaller cells, or for transporters with slower kcat, membrane surface

area limitation (a special case of porter limitation) may be encountered. In the interval bounded by SlbSA and SubSA, n� is constrained to nmax (black dashed line). C)—

Growth rates of optimally acclimated cells (solid green line) follow the intersection of two limits: the diffusive limit (purple dashed line) and the internal growth

limit mGmax (black dashed line). These rate limits are, again, bisected by S� with a sharp transition. D)—If surface area limitation is encountered, growth rates in the

interval SlbSA � S1 � S
ub
SA follow a more gradual, hyperbolic transition from diffusion limitation to growth limitation.

https://doi.org/10.1371/journal.pcbi.1008140.g003
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By demanding that the uptake rate match vGmax, we find the optimal number of transporters

to be

n�G ¼
kPs þ S1
S1
nG �

kcat
�ShDr

: ð11Þ

In this expression, n�G behaves proportionally to 1/S1 and it is plainly seen that a disconti-

nuity is possible at a particular S1. This concentration SlbG represents the lower limit for which

Eq 11 holds,

SlbG ¼
nGkcat
�ShDr

¼
vGmax
�ShDr

: ð12Þ

For all concentrations S1 � SlbG , no abundance of transporters is sufficient to match uptake

to the growth limit. Instead, the maximal uptake rate is set by the diffusive flux vD =

4πϕShrDS1. Accordingly, the optimal number of transporters n�D in this diffusion limited

interval is

n�D ¼
vD

kcat
: ð13Þ

In keeping with the maximum growth rate assumption, it follows that maintaining unoccu-

pied transporters incurs some non-zero cost; we therefore consider the minimum n� over the

full domain of S1. The intersection of the two transporter abundance optima S� represents the

steady-state transition from diffusion limitation to growth limitation. Since n�D is a linear func-

tion of S1, and since n�G is symmetric about the discontinuity SlbG , the intersection S� (in the

positive domain of S1) is the positive root of a quadratic,

0 ¼
rDS2

1

kcat
� 2S1 � k

P
s : ð14Þ

By assuming optimal transporter abundance within the cellular growth context of Eq 2, we

arrive at the proposed steady-state acclimation model (Fig 3), which is piecewise linear with a

transition at the discontinuity S�,

m ¼

4prDS1
Q YX=S � M if S1 � S�

vGmax
Q YX=S � M if S1 > S�

8
>>><

>>>:

ð15Þ

Cell size and surface area limitation

It is worth noting that although cell size is clearly an important determinant of growth rate in

the diffusion limited regime, the range of cell sizes observed within the range of phenotypes

from batch-acclimated to the lowest dilution rate glucose-limited chemostat spanned only a

12% change in radius [15]. Thus we expect acclimation to nutrient availability in this case to

be predominantly regulated by transporter abundance. It might also be noted that despite this

small observed change in cell sizes over the substrate concentration interval tested, the most

effective strategy to maximizing growth rate as S1! 0 shifts from regulating n to regulating r.
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Perhaps Escherichia coli K12 is simply not capable of this adaptation, but should not be ignored

in the case of other taxa which are.

As concentrations approach SlbG in the nutrient-replete regime, n� !1, but clearly this is

not physiologically possible since there is finite membrane space afforded to transporters. In

their conceptual model of transport through a sphere of known dimension and with a number

n of pores of known dimension, Berg and Purcell [1] proposed that the addition of a number

of transporters n � pr
s , where s is the radius of the transporter, does not appreciably increase

the uptake rate [1]. Given their selection of 10 Å for transporter radius and for a cell of 1 μm

radius, this corresponds to an areal coverage of less than 0.1%. Although this is a convenient

parameterization for the maximum number of transporters nmax, we find that in the case of

the glucose transporter PtsG, given experimental maximum n = 9402 cell-1 [15] and corre-

sponding cell size, s would need to be no larger than 2 Å which is roughly half the van der

Waals radius of the glucose molecule alone, and much smaller than the barrel radius from our

structural analysis (see Methods). On the contrary, Asknes and Egge [3] predicted a site cover-

age of 8.5%, corresponding to nmax = 21, 058 cell-1, which is comfortably above the maximum

observed n given our best estimates of the corresponding catchment area for the PtsG protein.

Therefore, we required that all n� nmax, where nmax ¼
4pr2 fmax

A and the maximal areal coverage

fmax = 0.085. Nevertheless, the wide discrepancy between fmax estimates between these studies

is unclear, and it is certainly possible that fmax will vary between cell membrane designs, and is

therefore a somewhat unsatisfying and arbitrary boundary which should be better constrained.

Variation in cell size introduces a nuance to our proposed model which provides a mecha-

nistic basis for more gradual transitions observed between the diffusion-limited regime and

the growth-limited regime. In some scenarios, n� exceeds nmax over a substrate concentration

interval wherein uptake rates become surface area (SA) limited, a special case of porter limita-

tion. This interval can be constrained to a lower SlbSA and upper bound SubSA, both evaluated at

the intersections of Eqs 11 and 13 with nmax,

SlbSA ¼
nmaxkcat
4prD

ð16Þ

SubSA ¼

nmaxkcat
�ShDr þ k

P
S

nmax
nG � 1

ð17Þ

Within the interval SlbSA � S1 � S
ub
SA, the optimal number of transporters is constrained to nmax,

resulting in a hyperbolic transition in uptake rate from diffusion limitation to growth limita-

tion (panels B and D in Fig 3). Although it was not relevant for our present case, to accommo-

date surface area limitation under such a scenario, a third conditional is appended to Eq 15,

m ¼

4prDS1
Q

YX=S � M if S1 < SlbSA

vðnmaxÞ
Q

YX=S � M if SlbSA � S1 � S
ub
SA

vGmax
Q
YX=S � M if S1 > SubSA

8
>>>>>>>>><

>>>>>>>>>:

ð18Þ

where v(nmax) is the uptake rate defined in Eq 5, evaluated at n = nmax.
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Model validation

Glucose transport in aerobic cultures of the model bacterium Escherichia coli K12 was used as

a system to validate our acclimation model. Although the physiological response to glucose

limitation in E. coli is complex, with several complementary transporters with broad substrate

specificity induced by cAMP, the primary transporter under both glucose excess and glucose

limited growth conditions is the phosphotransferase system (PTS) which relies on the glucose-

specific permease PtsG [27]. Indeed, PtsG was the most abundant permease in both glucose-

limited chemostats and glucose excess batch cultures (S1 Fig; [15]).

Whereas kcat values are rarely reported for transporters, we were able to directly compare ks
values from a collection of 11 substrates (Table 2). The modeled effective half-saturation con-

centrations (ks ¼ kPs þ k
D
s ) for all substrates spanned 4 orders of magnitude between substrates.

ks values from experimental studies were compiled from the same Escherichia coli strain K12

(but not necessarily from the same sub-strain), harvested in exponential phase from substrate

replete batch cultures. In a direct comparison, our model predictions agreed closely with these

reported values (Fig 4; Model 2 linear regression, R2 = 0.89, dF = 11), and the slope was not dif-

ferent from parity (regression slope = 0.98, standard error = 0.11). Note that the literature

value reported for zinc was determined by a method which gives a value closer to the dissocia-

tion constant rather than the half-saturation constant [28], and should therefore be considered

an upper bound. The deviation between predicted and observed ks values for acetate transport

is less obvious, but may be due to either the mechanism of the transporter ActP, which is the

only symporter in our set, or the presence of a second, lower-affinity symporter YaaH which

would introduce biphasic kinetics that our model does not currently resolve.

Our core assumption, that unoccupied transporters would not be maintained by acclimated

phenotypes which have optimized their physiology to maximize growth rates, can be tested by

comparing transporter abundances for non-limiting substrates in cells grown across a range of

growth conditions, with the expectation that abundances scale with maximal uptake rates.

Additionally, at constant temperature, pH, and salinity, the property kcat would be expected to

be invariant. Both the absolute abundance (cell-1) and the aerial density (m-2 of inner mem-

brane surface area) of transporters of the inorganic nutrient ions phosphate, sulfate, and zinc,

which were supplied in great excess in all media formulations [15], were linearly related to

their vGmax uptake rates, as quantified by FBA, across all growth conditions (P = 9 � 10−5, 5 �

Table 2. Summary of parameter values corresponding to batch growth conditions. Sulfate, phosphate, and zinc parameters are reported only for glucose-replete batch

cultures. “Exp.” refers to experimentally determined ks values, except in the case of zinc, which should be considered a dissociation concentration and is thus an upper

bound.

Substrate Gene A
10-16 m2

vmax
fmol cell-1 h-1

nG

cell-1
kcat
molecules s-1

Model ks
μM

Exp. ks
μM

Reference

Sulfate cysW 1.62 0.14 39 595 3.8 2.1 [29]

Phosphate pstB 0.87 0.53 113 786 9.3 5.5 [30]

Zinc znuA 0.51 187 (10-6) 434 0.1 1.2 (10-3) 20 (10-3) [28]

Acetate actP 1.15 10.63 336 5293 34.8 5.4 [31]

Fructose fruA 1.22 7.42 3364 369 6.9 5.4 [32]

Fumarate dctA 1.42 8.72 596 2446 21.3 30 [33]

Galactose mglA 0.15 2.33 534 732 66 59 [34]

Glucose ptsG 0.39 6.37 2775 384 16.6 20 [35]

Glycerol glpF 0.42 8.36 1289 1085 27.3 19 [36]

Succinate dctA 1.42 8.17 567 2410 21.2 25 [33]

Xylose xylH 1.61 6.99 105 11196 94.3 100 [37]

https://doi.org/10.1371/journal.pcbi.1008140.t002

PLOS COMPUTATIONAL BIOLOGY Substrate-limited transport

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008140 August 26, 2020 10 / 17

https://doi.org/10.1371/journal.pcbi.1008140.t002
https://doi.org/10.1371/journal.pcbi.1008140


10−3, and 6 � 10−3, respectively). The coefficient of variation between growth conditions for kcat
was less than 25% for this subset, and no growth rate or cell size dependence of the residuals

could be detected.

Acclimation to limiting nutrients

Escherichia coli K12 BW25113 cells maintained an optimal number of PtsG transporters corre-

sponding to Eq 11 for all S1> S�, and corresponding to Eq (13) for all S1� S�. Fig 5 shows

contours of uptake rates in the plane of transporter abundance and glucose concentrations.

The instantaneous uptake rate kinetics for an arbitrary acclimated phenotype may be described

by the hyperbolic curve generated by following a horizontal section in the top panel, corre-

sponding to a constant number of transporters. Accordingly, the uptake rate kinetics for all

optimally acclimated phenotypes may be described by following n�, which is a linear function

proportional to S1 in the diffusion-limited regime, and a reciprocal function of S1 in the

growth limited regime. Predicted n� optima were in close agreement with measured PtsG glu-

cose transporter abundances for Escherichia coli cultures grown in glucose-limited chemostats

spanning a range of dilution rates from 0.12 h-1 to 0.50 h-1 and in nutrient replete batch accli-

mated cultures growing in exponential phase at 0.60 h-1. In this particular scenario, nmax was

not intersected by n�, so no intermediate surface area limitation transition was encountered

(Fig 5—Top panel; [15]). Uptake rates for predicted optimally acclimated phenotypes also

closely matched those derived from data (Fig 5—Bottom panel; [15]). The uptake rate kinetics

Fig 4. Comparison of predicted and experimental values of the effective half-saturation concentrations of 11 substrates in nutrient-replete batch

acclimated cultures of Escherichia coli K12. Parity is indicated as a solid line.

https://doi.org/10.1371/journal.pcbi.1008140.g004
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for all optimally acclimated phenotypes was linear in the diffusion limited regime, and transi-

tioned at S� to maintain vGmax in the growth limited regime.

Discussion

A model of substrate uptake which accounts for optimal physiological acclimation to sustained

growth at a range of constant substrate concentrations was developed and implemented with a

pseudo-mechanistic approach. Critically, the proposed model assumes that an optimal pheno-

type would maintain only the minimal number of transporters required to sustain either the

maximum growth rate or the maximum diffusive flux. Maintaining more than this optimal

abundance would incur a cost by exceeding substrate demand, and thus a growth rate penalty;

maintaining fewer than this optimal abundance would result in sub-maximal substrate uptake

rates, also a growth rate penalty. The resulting profile of both observed and optimal transporter

abundances (Fig 5) shows an intermediate maximum, which is unexpected by conventional

wisdom of, at least, the transcriptional response to nutrient limitation. The gap in observations

of transporter abundances between the highest dilution rate glucose-limited chemostat and

the glucose-replete batch acclimated culture is expected for practical reasons, but is somewhat

unsatisfying and should be revisited to further validate the proposed model as quantitative pro-

teomics datasets become more commonplace. Nevertheless, the steady-state kinetics associated

with this optimal set of phenotypes (Eq 15) resembles those of the piecewise linear Blackman

kinetics, and for similar reasons; a transition from one limitation to another. The critical

Fig 5. Model predictions and observations of Escherichia coli acclimation to growth on glucose. Top panel—

Modeled and experimental abundances of the glucose transporter PtsG across steady-state concentrations of glucose

(log scale). Contours indicate the corresponding uptake rates. The vertical green dashed line represents the critical

substrate concentration S�. nmax is above the plotted range. Bottom panel—Modeled and experimental uptake rates

over an interval of glucose concentrations. The uptake rate profile for a glucose-replete batch acclimated culture is

shown in cyan. Uptake rates for all acclimated phenotypes over the concentration range are shown in red, with model

predictions shown as a continuous line and experimentally derived values from published data [15] shown as markers.

For guidance, the maximum diffusive flux is shown as a dashed blue line, S� is shown as a vertical dashed green line,

and vGmax is indicated by the horizontal dashed orange line.

https://doi.org/10.1371/journal.pcbi.1008140.g005
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substrate concentration S� therefore represents the transition between diffusion limitation and

growth limitation, barring the scenario where membrane surface area limitation mediates that

transition. Variations in cell size or kcat introduce some nuance to the shape of this transition,

as membrane surface area limitation presents another, intermediate limiting state. In those

scenarios, n� is held at nmax, resulting in hyperbolic uptake rates in the interval between SlbSA
and SubSA, thus providing a mechanism to reconcile observations of a more gradual transition

from first-order diffusion limitation to zero-order growth limitation (Eq 18). Although we

have considered the simple case of a single limiting substrate, we speculate that the competi-

tion between transporters for membrane space may give rise to apparent co-limitation when

multiple substrates are present at concentrations near S�, as may very well be the case for natu-

ral environments where S� would be expected in the vicinity of the minimum resource limit

for net population growth (Tilman’s R�) [38].

Steady-state substrate-limited microbial growth has been routinely modeled as a hyperbolic

function of the concentration of a limiting resource either internally to the cell, as is the case

for the Droop model [39], or in the external medium, as is the case for the Monod model [40].

Discussion of the well known Monod and Droop models can be found elsewhere (e.g., [41]),

but the Blackman model [42] is a somewhat forgotten model of growth. The Blackman model

describes steady-state microbial growth kinetics by a linear dependence on a limiting factor,

similar in form to (Eq 15), which persists over a discrete interval until another limiting factor

is encountered. Despite their differences, critical evaluation of these foundational microbial

growth models and their later modifications (e.g., [43, 44]) have shown support for each [45].

Intriguingly, Blackman kinetics, which were presumably known to Monod some 40 years

later, would have provided a better fit to his chemostat data from glucose-limited Escherichia
coli than did his own empirical model. This realization was the motivation behind several sub-

sequent studies which expanded on Blackman kinetics [46, 47]. Piecewise linear growth depen-

dence on substrate concentration is readily observed in natural microbial communities (e.g.,

Fig 4 in: [41]), though it is rarely attributed as such (c.f., [48]) and has been largely abandoned

in favor of the more mathematically convenient hyperbolic models of Monod and Droop. The

competition for membrane space in our proposed model provides a possible mechanism to

reconcile these two fundamentally different descriptions of microbial growth, one which could

conceivably be put to the test.

The distinction between the assumptions that frame our model from those of the two previ-

ously mentioned Models A and B on the dependence of transporter abundance on substrate

concentration is fairly subtle, but can predict qualitatively different shapes to the growth

dependence on substrate availability. As in vivo enzyme turnover number predictions improve

and become more widely available (e.g., using machine learning algorithms [43]), the require-

ment for technically challenging and costly quantitative proteomics data may be obviated. This

should enable more comprehensive validation of the model and more broad application to

steady-state simulations of microbial growth, requiring only that a genome-scale stoichiomet-

ric model of metabolism be available, and that the cell size and the maximum growth rate be

additionally known.

Methods

Determination of transporter kcat by quantitative proteomics and flux

balance analysis

kcat values were determined by Eq 4 using flux balance analysis (FBA) quantitation of vGmax and

corresponding protein abundances nG reported in a quantitative proteomics study [15]. A

genome-scale stoichiometric model of metabolism for Escherichia coli K12 MG1655

PLOS COMPUTATIONAL BIOLOGY Substrate-limited transport

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008140 August 26, 2020 13 / 17

https://doi.org/10.1371/journal.pcbi.1008140


(iML1515; [16]) was used to quantify transport fluxes in simulations of each of the cultivation

conditions employed by Schmidt et al. [15] in their quantitative proteomics study.

In their study, Escherichia coli K12 BW25113 was grown in batch culture on each of 11 sole

carbon sources and harvested in logarithmic phase, or in continuous culture on glucose sup-

plied at 4 dilution rates (0.12, 0.20, 0.35, and 0.50 h-1). FBA was implemented by allowing for

unconstrained transport of only those substrates which were supplied in each defined medium,

and the “biomass reaction” was constrained to the experimental growth rate. An L1-norm

minimization was implemented to remove loops. Extensive documentation and guides to the

implementation of FBA with iML1515 and other stoichiometric models of metabolism within

several programming environments is available at opencobra.github.io. FBA was implemented

within the Matlab (The Mathworks, Inc.) Toolbox COBRA (Version 3.0; [21]), the Python

(Python Software Foundation) package COBRApy [22], and optimizations were performed

using Mosek (Version 9; Mosek ApS).

Determination of transporter capture area

Ligand capture area A for each transporter was interpreted to be the area of the transporter

membrane domain. Protein sequences for each transporter were used to model quaternary

structures using RaptorX [23]. The predicted structures were then rendered and transmem-

brane domain dimensions were measured using PyMOL (The PyMOL Molecular Graphics

System, Version 2.3 Schrodinger, LLC).

Estimation of molecular diffusivities

Aqueous diffusion coefficients were determined as an empirical function of hydrated molecu-

lar volumes and water viscosity [24]. Hydrated molecular volumes were calculated using the

LeBas incremental method [25]. Dynamic viscosity was calculated as a function of temperature

and salinity [26] of the cultivation conditions [15].

Physiological data

To their credit, Schmidt and co-authors [15] had the foresight to supply detailed and comple-

mentary physiological measurements with their proteomics dataset. Electron micrographs

provided measurements of inner and outer cell membrane dimensions, and cell concentra-

tions and growth rates were reported with each medium formulation. We commend the

authors on providing these data in an accessible format, as it has enabled our model validation

and development. It is worth noting that although a different Escherichia coli K12 substrain

(BW25113) was used for the majority of growth conditions to quantify protein abundances

from the metabolic model substrain (MG1655) we used in FBA simulations, Schmidt et al.,

[15] showed only minor differences in absolute protein quantitation between these two sub-

strains in glucose-replete batch cultures.

Supporting information

S1 Fig. Comparison of the abundances of permease domains of known glucose transport

systems in Escherichia coli K12 grown in glucose-replete batch cultures and glucose-lim-

ited chemostats, as determined by quantitative proteomics ([15]; Data plotted with per-

mission from the authors). MalF—maltose permease; ManY—mannose permease; MglC—

galactose permease; PtsG—glucose permease.

(TIF)
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