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Light-Enhanced Microbial Organic
Carbon Yield
John R. Casey* , Sara Ferrón and David M. Karl

Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,
Honolulu, HI, United States

Molecular evidence for proteorhodopsin- and bacteriochlorophyll-based
photoheterotrophy is widespread in oligotrophic marine microbial community
metagenomes, and has been implicated in light-enhanced growth rates, substrate
uptake rates, and anapleurotic carbon fixation, thus complicating the web of interactions
within the ‘microbial loop.’ We quantified photoheterotrophic metabolism of the
oxidized organic acid glycolate, a fast-turnover and exclusively phytoplankton-derived
substrate at an oligotrophic site in the subtropical North Pacific Ocean. As expected,
concentration-dependent changes in uptake rates were observed over the diel cycle,
with maxima occurring at midday. Although no light-enhanced substrate uptake rates
were observed, samples exposed to light altered the balance between assimilation
and respiration, resulting in an approximately four-fold increase in glycolate-specific
assimilation efficiency. Energy demand for such a metabolic adjustment was linearly
related to light, consistent with photoheterotrophy.

Keywords: photoheterotrophy, glycolate, substrate assimilation efficiency, photorespiration, diel cycles of
microbial metabolism

INTRODUCTION

The web of microbially mediated transformations of carbon and energy in the oceans is intricate
and dynamic. The conduit through which a great majority of oceanic respiration is channeled
is the dissolved organic matter (DOM) reservoir. DOM is composed of thousands of unique
molecules in widely varying concentrations (Mopper et al., 2007), and the spectrum of turnover
spans from minutes (Fuhrman and Ferguson, 1986) to millennia (Ziolkowski and Druffel, 2010;
Zigah et al., 2017). Among other physicochemical attributes, the thermodynamic properties of
organic substrates governs their turnover, with high enthalpy substrates supporting sub-optimal
microbial growth rates and therefore turning over more slowly than low enthalpy substrates (Casey
et al., 2015). However, since the discovery of two unique light-harvesting systems widespread
in marine bacteria and archaea, aerobic anoxygenic phototrophy (AAP; Shiba et al., 1979) and
proteorhodopsin (PR) phototrophy (PRP; Béjà et al., 2000), the traditional view of a primary
producer-DOM-secondary producer microbial loop (Azam et al., 1983) should be revised (Karl,
2014). Collectively, PR and aerobic anoxygenic phototrophic bacteria and archaea comprise most
of the total heterotrophic microbial community in oligotrophic marine ecosystems (Rusch et al.,
2007), and PRs have been found in diverse bacterial phyla (McCarren and DeLong, 2007), including
the numerically dominant alphaproteobacterium SAR11 and marine archaea (Frigaard et al., 2006).
While nutrient and ion transport have been associated with rhodopsins (Chan et al., 1981; Dimroth,
1990; Feng et al., 2013; Inoue et al., 2013; Kwon et al., 2013; Yoshizawa et al., 2014), both PR
and the bacteriochlorophyll (BChl) complex are capable of generating a proton motive force
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(pmf) to supplement the ATP demands of biosynthetic and
maintenance functions. The PR pmf generated has been shown in
monoclonal cultures to markedly stimulate growth rates (Gómez-
Consarnau et al., 2007; Kimura et al., 2011; Palovaara et al.,
2014), anapleurotic carbon fixation rates (Palovaara et al., 2014),
substrate uptake rates (Alonso-Saez et al., 2006; Michelou et al.,
2007; Mary et al., 2008), and to resuscitate carbon-starved cells
(Gómez-Consarnau et al., 2010; Steindler et al., 2011). Whether
the high abundance and diversity of AAP and PRP in the marine
environment indicates a physiological cost-benefit solution to
energy limitation of heterotrophic microbial growth on low-yield,
thermodynamically efficient substrates remains unclear.

The PRP and AAP pmf may provide microbes with a
reliable energy source to supplement, or perhaps to partly relieve
oxidative phosphorylation demands (Johnston et al., 2005).
Indeed, Koblížek et al. (2010) measured a 70% reduction in
respiration rates of an AAP Roseobacter isolate when grown
on glutamate as a sole carbon source in the presence of
light. Accordingly, the ‘shaft work’ provided to facultative
photoorganoheterotrophs by photochemical energy transduction
should decouple substrate chemical energy potential from
the anabolic yields of obligate chemoorganoheterotrophs (von
Stockar et al., 2006). We hypothesized that light repression
of photoorganoheterotrophic respiration improves substrate-
specific growth yields within natural microbial assemblages,
especially for substrates more oxidized than their anabolic end-
products.

Light-enhanced nucleic acid and amino acid assimilation
rates have been reported in whole communities (Church et al.,
2004, 2006) and within flow cytometry sorted populations of
Prochlorococcus, Synechococcus, and small, low nucleic acid
bacterioplankton, including SAR11 (Michelou et al., 2007; Mary
et al., 2008; Gómez-Pereira et al., 2012). However, sorted
populations have not been directly linked to their respective
respiration rates, and thus evidence for light-enhanced bacterial
growth efficiency has necessarily been inferred from bulk
oxygen consumption (Cottrell et al., 2008). A suitable substrate
to evaluate light-enhanced heterotrophic growth yield is the
hydroxy acid glycolate. Glycolate has long been recognized
to be an important light-dependent excretory product of
phytoplankton (Tolbert and Zill, 1957; Nalewajko et al., 1963),
and featured at the center of a lively debate regarding its
extracellular production (Sharp, 1977; Mague et al., 1980;
Fogg, 1983; Bjørnsen, 1988) and consumption by heterotrophic
bacteria (Wright and Shah, 1977). Glycolate is secreted as a
result of photorespiration from photoautotrophic microbes like
high-light adapted Prochlorococcus strains (Bertilsson et al.,
2005), some of which lack a complete salvage pathway
(Casey et al., 2016). Since photorespiration is likely the sole
extracellular source of glycolate, and since glycolate permease
transporters and glycolate oxidases and dehydrogenases are
present in SAR11, glycolate represents a direct transfer of
oxidized, newly fixed photosynthate to support heterotrophic
carbon and energy demands. In this study, radiorespirometry
experiments were conducted to determine the concentration-
dependent kinetics of glycolate uptake, the diel cycle of
glycolate uptake, and the effect of light within that cycle

and as a function of depth within the euphotic zone
(5–100 m).

MATERIALS AND METHODS

Station Locations and Sample Collection
Samples were collected on two separate expeditions
(Cruise 1 – September 2013 at 22◦ 75′ N, 158◦ 00′ W and
Cruise 2 – July–August 2015 at 24◦ 25′ N, 156◦ 45′ W) in the
North Pacific Subtropical Gyre north of the island of O’ahu.
The kinetics experiment was carried out during Cruise 1.
Cruise 2 followed a semi-Lagrangian track near the center
of an anticyclonic mode-water eddy feature, facilitated by
maintaining ship’s position with World Ocean Circulation
Experiment Surface Velocity Profile drifters with 15 m-depth
drogues. Sampling for glycolate tracer incubation time-series
was conducted at 4 h intervals, uninterrupted over the course
of 2 days. Additionally, a depth profile of glycolate uptake
rates was conducted using a surface-tethered array, designed
to accommodate sample bottles suspended at 5, 25, 50, 75, and
100 m, which were deployed from dawn to dusk on the last day
of the time-series experiments. Water samples were collected
using polyvinyl chloride Niskin R© bottles mounted on a rosette
equipped with dual conductivity, temperature, pressure, and
oxygen sensors, a transmissometer, and a triplet fluorometer
(SBE 911plus, Sea-Bird Electronics, Inc.). Photosynthetically
active radiation (PAR; 400–700 nm wavelength band) are
measured both at the surface in time-series experiments by
shipboard quantum cosine sensor (LI-190R; LI-COR Inc.) with
data logger (LI-1000; LI-COR Inc.), and also in depth profiles
(0–190 m) by a free-falling profiling hyperspectral radiometer
(HyperPro, Satlantic LP.). Incubation time-integrated PAR was
calculated by scaling shipboard PAR to incubator transmittance
(50%).

Community Stocks, Production, and
Respiration Data
Alongside glycolate incubations, samples were collected for
chlorophyll a (Chl a), primary production (PP), and microbial
community respiration (MCR). Chl a and PP measurements
were conducted according to Hawaii Ocean Time-series standard
protocols (Karl and Dore, 20011). Briefly, for Chl a, 125 ml
samples were pressure filtered onto 25 mm glass fiber filters
(Whatman GF/F) and stored in acetone at −20◦C until analyzed
fluorometrically. For PP, 500 ml samples were collected in
triplicate at different depths and incubated in situ on a surface-
tethered array deployed before sunrise and recovered after sunset.
Prior to deployment, bottles were spiked with H14CO3

− to
yield a final radioactivity of approximately 2 MBq L−1. After
a 14 h incubation, samples were filtered onto GF/F filters,
acidified in glass scintillation vials with 1 ml 2M hydrochloric
acid and allowed to vent for 24 h prior to the addition
of 10 ml Ultima Gold LLN cocktail and liquid scintillation
counting. Similarly, samples for gross oxygen production (GOP)

1http://hahana.soest.hawaii.edu/hot/methods/results.html
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and MCR were collected in triplicate in 125 ml Pyrex glass
bottles, spiked with H2

18O (Medical Isotopes, 97.2% 18O) to
a final δ18O(H2O) of approximately 2300h, and incubated
in situ along with the PP array. After recovery, biological
activity was stopped by adding 100 µL of saturated mercuric
chloride solution. In addition, triplicate time-zero samples were
collected at each depth and poisoned at the beginning of
the deployment. Mass-to-charge (m/z) ratios of 32 (16O16O),
34 (18O16O), and 40 (Ar) were quantified using membrane
inlet mass spectrometry (MIMS) following Ferrón et al. (2016).
The system consists of a water inlet, described in detail by
Kana et al. (1994), and an analyzer, consisting of a HiQuadTM

quadrupole mass spectrometer (QMG 700) with a cross-beam ion
source, a Faraday collector, and a 90◦ off-axis secondary electron
multiplier (SEM), connected to a Pfeiffer Vacuum HiCube 80 Eco
turbo pumping station. MCR was determined as the difference
between GOP and the net O2 change during the incubation
(Ferrón et al., 2016).

Glycolate Kinetics and Uptake
Experiments
Incubations for glycolate kinetics and diel uptake rates were
conducted in semi-transparent acrylic (shaded to approximately
match the 15 m depth of sampling) or darkened deckboard
incubators flushed with circulating surface seawater to maintain
in situ temperatures. Incubator bath temperatures were
monitored by HOBO Pendant R© Data Loggers (Onset Computer
Corp.). We refer to samples incubated at simulated light
levels of 15 m depth as ‘unshaded,’ and samples incubated
in dark conditions as ‘shaded,’ so as not to be confused with
nighttime. Accordingly, ‘light’ and ‘dark’ refer to daytime and
nighttime.

Experimental procedures for glycolate incubations were
described in Casey et al. (2015). Briefly, 60 ml samples were
spiked with [U-14C]-glycolic acid calcium salt (14C-glycolate
herein; American Radiolabeled Chemicals, Inc.) at a specific
radioactivity of 1.48 TBq mol−1. For the kinetics experiment,
nine spike concentrations were added, ranging from 1 to
348 nM, spaced logarithmically. For all other incubations, spike
concentrations were 10 nM. Uptake time series samples were
collected at 4 h intervals for 2 days, Samples were incubated
for 4.7 ± 0.4 h. All samples were incubated in triplicate
and a 500 µL total activity aliquot was collected from each
sample prior to incubation. For glycolate assimilation rates
(vA), samples were filtered under gentle vacuum (<70 mBar)
directly after incubation onto 25 mm glass fiber filters (nominal
pore size 0.3 µm; GF75, Sterlitech Corp.) and rinsed with
three volumes of 20 ml 0.2 µm filtered seawater. Filters were
transferred to 20 ml glass scintillation vials and submerged
in 10 ml scintillation cocktail (Ultima Gold LLT, Perkin
Elmer). To account for 14C-glycolate adsorbed to cells or glass
fiber filters, a “killed-control” replicate sample poisoned with
2% final concentration paraformaldehyde was included prior
to each incubation. Killed-controls were incubated alongside
live samples and processed identically. Assimilation depth
profiles were conducted alongside PP and MCR in situ
arrays.

For glycolate respiration rates (vR), 125 ml glass serum
bottles were fitted with rubber sleeve stoppers pierced with
center well cups containing a dry piece of fluted cellulose
paper (Whatman #2) positioned in the headspace. Respiration
incubations were terminated by first soaking the filter paper
with 150 µL phenethylamine and then acidifying the sample
with 4 ml 4.5 N sulfuric acid through the gas-tight stopper.
The acidified sample was allowed to react for at least 48 h
before removing the stoppers. This procedure is designed to
completely capture the respired 14CO2. Center well cups were
transferred to 20 ml glass scintillation vials and submerged
in 10 ml scintillation cocktail. A complete radiochemical
mass balance (100 ± 4%) was achieved in the kinetics
experiment, and recovery was independent of substrate
concentration.

Glycolate uptake rates were calculated as the sum of
assimilation and respiration rates. Glycolate-specific energy
transduction was calculated as the difference in glycolate
respiratory energy yield (YE) in shaded and unshaded samples
incubated during daylight hours (YE,Shaded–YE,Unshaded).
Glycolate energy yield was calculated as the product of
the respiration rate and the standard molar enthalpy of
combustion

(
YE = vR ×1H◦C

)
of glycolate. Throughout,

two-tailed t-tests were used to determine significant differences
between treatments, and correlation coefficients were determined
from model I or model II least-squares regressions, as appropriate
for the experimental conditions (Laws, 1997).

RESULTS

Glycolate Kinetics Experiment
Two distinct kinetics profiles were observed for dark glycolate
assimilation and respiration (Figure 1). Assimilation followed a
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FIGURE 1 | Kinetics experiment. Glycolate assimilation and respiration as a
function of added substrate. Error bars represent one standard deviation of
the mean rates of three replicates at each concentration. Michaelis–Menten
non-linear least-squares regression line is shown (solid line) for assimilation
data.
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monophasic Michaelis–Menten function with a resulting half-
saturation concentration (Km,A) of 118 nM and a maximum
velocity (Vmax,A) of 1.2 nM h−1. Glycolate respiration did
not appear to completely saturate over the concentration range
tested, therefore Km,R and Vmax,R could not be determined. The
resulting uptake parameters Km,U and Vmax,U were calculated
to be 195 and 8.9 nM h−1, respectively. Glycolate-specific
assimilation efficiency (100∗VA/VA + VR) varied as a logistic
function of substrate concentration added (S), with highest
efficiencies (29.3 ± 0.9%) corresponding to S < 57 nM. At
saturating substrate concentrations, the assimilation efficiency
approached 12%. The glycolate turnover rate was 0.63 d−1, a
half-life of 26 h.

Glycolate Diel Time-Series Experiment
Glycolate uptake rates varied by roughly three-fold (280 ± 70%)
over the diel cycle, in phase with the solar cycle, and no
difference between shaded and unshaded uptake rates was
observed (two-sample t-test with unequal variance; p = 0.39;
Figure 2). Glycolate assimilation rates also followed a diel cycle
(310 ± 110%), but with maximal rates occurring in unshaded
samples in the morning or early afternoon (600–1400 h, local
time). Assimilation rates in shaded samples were 35 ± 7% lower
than in unshaded samples (p = 0.007) during daylight hours,
and were similar to nighttime samples (p = 0.42). In contrast,
glycolate respiration rates in shaded samples were 120 ± 14%
higher than unshaded samples (p < 0.001) during daylight

FIGURE 2 | Time-series experiment. Glycolate uptake (Top), assimilation (Second), respiration (Third), and specific assimilation efficiency (Bottom) for shaded and
unshaded incubations over the course of the diel time-series experiment. Mean (large symbols) and individual data points (small symbols) are shown for clarity.
Photosynthetically active radiation (PAR) data are overlaid (green line) in each panel and nighttime is indicated by shaded areas. Data points are aligned to the
midpoint of each incubation.
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hours, and unshaded samples were similar over the entire
daylength (p = 0.71). The discrepancy between daytime light-
dependent responses in glycolate assimilation and respiration
rates resulted in glycolate-specific growth efficiencies ranging
from 24± 6% in shaded daytime samples to 82± 8% in unshaded
daytime samples (p < 0.001). Even if the glycolate taken up was
quantitatively respired, the maximum potential contribution of
phytoplankton uptake of respired 14CO2 calculated from isotope
dilution into the very large dissolved inorganic pool of seawater
(approximately 0.006 DPM) would be negligible.

Glycolate Assimilation Depth Profile
Experiment
Assimilation rates decreased exponentially with depth (Figure 3),
and were more closely correlated with PAR (Model II geometric
mean least-squares fit; r = 0.997) than with PP (r = 0.88), GOP
(r = 0.90), or MCR (r = 0.51). Importantly, within the mixed
layer (36 m; defined as the 0.125 kg m−3 offset from 0 m), PP
and GOP were uniform, indicating a decoupling of glycolate
cycling from PP. In consideration of the differences in incubation
lengths between in situ and on-deck incubations, assimilation
rates at 25 m on the array were similar to average diel time-series
assimilation rates (p= 0.71).

Photoheterotrophic Energy Potential and
Glycolate Respiration
Energy transduction, such as the pmf generated by PR or
BChla-complex, should increase the adenylate energy charge

and thus increase the anabolic yield. Similarly, a quantitative
substitution of the energy derived from dark glycolate respiration
should be derived from light. Since numerous pathways for
the assimilation of glycolate are possible, and the composition
of each consumer may differ considerably, the free energy
of glycolate anabolism cannot be estimated reliably. Instead,
we introduce a quantity derived from the enthalpy generated
by the respiration of glycolate in shaded and unshaded
incubations during the daytime. This quantity, glycolate-specific
energy transduction, reflects the maximum chemical potential
energy derived from light-dependent processes. Glycolate-
specific energy transduction was linearly correlated with PAR
integrated over each daytime incubation (r = 0.97; p < 0.001;
Figure 4). Accordingly, over the range of irradiances observed,
the relationship between these two energy quantities (light and
chemical energy) did not saturate.

DISCUSSION

Glycolate, a low molecular weight (76 Da) hydroxy acid,
may constitute an important flux of both carbon and energy
within the marine microbial community metabolism. Dark
glycolate uptake kinetics indicated an upper bound ambient
concentration of 30 ± 6 nM, based on turnover time as a
function of substrate added (Dietz et al., 1977). This estimate,
though an upper bound (Laws, 1983), is roughly half the
nighttime concentration measured by HPLC at an oligotrophic
site (60–70 ng Chl a L−1) in the tropical eastern North Atlantic
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(66 nM; Leboulanger et al., 1997), and is well below the Km,U
(195 nM). During the dark kinetics incubation, the glycolate
pool turned over approximately daily (1.1 ± 0.1 days); however,
this is likely an underestimate due to disequilibrium with
respect to production (which is exclusively during daylight
hours).

Time-series incubations showed a characteristic diel cycle
in uptake rates in phase with the solar cycle, independent of
whether the sample was exposed to light. Taken together with
our understanding of a photorespiratory source of glycolate,
these results indicate ambient concentration-dependent rates,
rather than light-enhanced uptake by heterotrophs. Although
the time-series experiment and kinetics experiment were
conducted on separate expeditions with somewhat different
phytoplankton community stocks and rates (Cruise 1: Chl
a = 80 ng L−1, PP = 8.1 mg C L−1 d−1; Cruise 2: Chl
a = 137 ng L−1, PP = 9.9 mg C L−1 d−1), nighttime
uptake rates (10 nM spike) collected during the time-series
experiment closely matched the corresponding values from the
kinetics curve (p = 0.81). With this caution, we conservatively
estimate a two-fold change in ambient glycolate concentrations
over the course of the diel cycle, which is consistent with
estimates from the North Atlantic (2.4 ± 1.2-fold; Leboulanger
et al., 1998). Glycolate-specific respiration rates accounted for
approximately 3% of total community oxygen consumption
(respiration rates), and considering the glycolate respiration
quotient, 6% of total community respired CO2 (assuming a
total community respiration quotient of 1.0; del Giorgio et al.,

2006; c.f., Berggren et al., 2011). On a carbon basis, glycolate
production rates accounted for less than 4% of GOP in the time-
series incubations, however, this can also be interpreted as an
underestimate of gross photorespiration since salvage pathways
are present in some photoautotrophs. Due to methodological
challenges, photorespiration rates have only been indirectly
measured in the oceans (Carrillo et al., 2004), and may be
an important but largely ignored flux of carbon (Karl et al.,
1996).

High-light adapted ‘ecotypes’ (eHL) of the marine
cyanobacterium Prochlorococcus, the most abundant
photoautotroph at Station ALOHA, lacks glycolate oxidase
or glycolate dehydrogenase, an essential step in the salvage
pathway for photorespiratory glycolate regeneration of
3-phosphoglycerate. Because the precursor 2-phosphoglycolate
is toxic to central carbon fixation pathways, Prochlorococcus
actively excretes glycolate via an ATP-binding cassette efflux
transporter. In cultures of two eHL Prochlorococcus strains,
glycolate excretion was 3% of carbon fixation (Bertilsson
et al., 2005), remarkably close to our upper bound estimate.
It should be noted that the diazotrophic cyanobacterium
Crocosphaera, which was relatively abundant during the time-
series expedition (100–700 cells ml−1; 3% of PP; calculated from
Wilson et al., 2017), does have a complete photorespiratory
salvage pathway. Therefore we cannot eliminate the possibility
that Crocosphaera could take up glycolate. Notwithstanding,
Prochlorococcus was the dominant primary producer during
the time-series expedition, and was likely the major glycolate
producer. Interestingly, a major consumer of glycolate is likely
the numerically dominant heterotroph at Station ALOHA,
SAR11, a small alphaproteobacterium with an absolute growth
requirement for pyruvate and either glycolate or one of several
photorespiratory salvage pathway intermediate metabolites.
SAR11 has both a glycolate transporter and glycolate oxidase
which yields glyoxylate and hydrogen peroxide. In addition to
the apparent co-evolution of these two dominant oligotrophs
(Braakman et al., 2017), SAR11 and much of the heterotrophic
microbial community at Station ALOHA (Rusch et al., 2007),
have genes for proteorhodopsin-based phototrophy, prompting
our investigation into the light-dependent metabolism of
glycolate. With a respiration quotient (mol CO2: mol O2)
of 2, a carbon redox number of 3, and a standard carbon
molar enthalpy of combustion (1H◦c) of 340 KJ [C-mol]−1,
glycolate is a relatively poor energy substrate. Accordingly,
heterotrophic growth on carboxylic and hydroxy acids like
acetate and fatty acids typically requires the operation of
the glyoxylate shunt (Kornberg, 1966), a bypass of two CO2
evolving steps of the oxidative tricarboxylic acid pathway by
way of isocitrate lyase and malate synthase which allows the
net accumulation of carbon through acetyl-CoA. However,
at least one alternative pathway utilizing glyoxylate is present
in SAR11 and many other heterotrophs, consisting of a
heterotrophic analog of the photorespiratory salvage pathway
which can supply precursors for gluconeogenesis (by way of
3-phosphoglycerate) or a number of amino acid synthesis
pathways (by way of L-glycine). These anabolic pathways cannot
be sustained without a supplemental energy source, since
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the ATP/NAD(P)H ratio and yield of the glyoxylate shunt
using glycolate as a substrate does not satisfy the demands
of e.g., protein synthesis (calculation based on iAF1260, a
metabolic model of Escherichia coli K-12 MG1655; Feist et al.,
2007).

The central finding of this study, that exposure to light
enhances the glycolate-specific assimilation efficiency, points to
the possibility that the pmf generated by PR or by the BChla-
complex yields sufficient energy to divert glycolate flux from
the mostly catabolic glyoxylate shunt to the mostly anabolic
pathways. We cannot eliminate the possibility that another light-
dependent process which is decoupled from PP and community
respiration could reproduce our observations. However, the
strong correspondence between light and glycolate-specific
assimilation efficiency, independent of concentration, supports
the notion that photoheterotrophy supplements cellular energy
demands for growth on oxidized substrates. Furthermore,
considering the 1H◦c and the maximum chemical potential
energy yield of glycolate respiration, the resulting energy yield
was closely correlated with PAR irradiance integrated over
each incubation, rather than PP or community respiration.
Unfortunately, it is not possible to ‘scale’ glycolate-specific
phototrophic energy yields to total photoheterotrophy, since
the composition of the myriad additional growth substrates
and their respective uptake rates and light-dependent growth
efficiencies is not known. We suggest that light-enhanced
biomass yields may play an important role in the co-evolution
of Prochlorococcus and SAR11 (Braakman et al., 2017), a
metabolic coupling supported by the exchange of low-yield,
thermodynamically optimal substrates (glycolate and pyruvate;

thermodynamic efficiency = 20–24%; Westerhoff et al.,
1983).
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