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M I C R O B I O L O G Y

Basin-scale biogeography of marine phytoplankton 
reflects cellular-scale optimization of metabolism 
and physiology
John R. Casey1,2*, Rene M. Boiteau3, Martin K. M. Engqvist4, Zoe V. Finkel5, Gang Li4, Justin Liefer6, 
Christian L. Müller7, Nathalie Muñoz8, Michael J. Follows1

Extensive microdiversity within Prochlorococcus, the most abundant marine cyanobacterium, occurs at scales 
from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic poten-
tial, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling 
framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical com-
positions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, 
observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in 
strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche sub-
spaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried 
with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear 
density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organi-
zation in terms of cellular-scale processes.

INTRODUCTION
The cyanobacterium Prochlorococcus is the most abundant photo-
synthetic organism in the ocean, contributing most of the primary 
production in vast regions of the nutrient-starved subtropical gyres 
(1–3). The dominance of Prochlorococcus in these “ocean deserts” 
has been attributed to their small size (4), streamlined genomes (5), 
and their microdiversity (6,  7). At the subspecies clade level, 
“ecotypes” of Prochlorococcus partition with depth in the water 
column and along temperature gradients to span the full euphotic 
layer from about 40°N to 40°S (8–11) and exhibit differential activity 
within the total Prochlorococcus assemblage (population, herein) (12). 
To maintain access to a low but variable supply of many organic 
and inorganic nutrient resources, it may be that Prochlorococcus 
shifts the costs of housing a broad metabolic repertoire from the 
individual cell to the population. While a typical strain contains fewer 
than 2000 protein-coding genes, the pangenome of Prochlorococcus 
may carry more than 80,000 protein-coding genes (13), a vast library 
of genetic potential distributed among a nonredundant, diverse 
minority. Extensive metagenomic surveys and single-cell sequencing 
have provided a glimpse into the scope of the pangenome (14) and 
the co-occurrence of many strains (6, 12), but it is unclear how meta-
bolic and physiological microdiversity influences the Prochlorococcus 
population fitness across the ocean.

Prochlorococcus populations make use of a broad repertoire of 
strategies to respond to changes in nutrient availability and light 

conditions through its genetic diversity (15), photoadaptation and 
photoacclimation (16, 17), flexibility in nutrient uptake kinetics 
(18), and changes in elemental stoichiometry (19,  20). Although 
much has been learned about the biology of Prochlorococcus, its 
physiology, genetic diversity, and adaptations to its spartan lifestyle, 
the current generation of statistical and dynamic models used to 
interpret and predict Prochloroccus biogeography and biogeochem-
istry (21–23) reflects little of the depth of diversity or current 
mechanistic understanding. Drawing from extensive genomic and 
molecular datasets, we present a model that spans the genetic 
microdiversity of Prochlorococcus and resolves physiological and 
metabolic acclimation to local environments. It can provide a 
framework to simulate and interpret the essential diversity and 
flexibility of this organism and the organization of its populations 
at the ecosystem scale.

RESULTS AND DISCUSSION
The Microbial Simulation Environment
We developed the Microbial Simulation Environment (MSE; http://
github.com/jrcasey/mse_AMT; Fig.  1), a pipeline to simulate the 
steady-state growth, metabolism, and physiology of both sequenced 
isolates and in silico strains, each acclimated to a particular envi-
ronment. Briefly, a pangenome-scale metabolic model (PanGEM) 
was reconstructed, drawing from a database of 866,894 protein 
coding sequences across 647 sequenced isolates, metagenome- 
assembled genomes, and single cell–amplified genomes spanning 
the Prochlorococcus phylogeny (DOI:10.5281/zenodo.4477905; 
data S1). The PanGEM consists of 1117 orthologous gene clusters, 
1484 reactions, and 1282 metabolites and was manually curated 
and annotated with multiple bioinformatics, cheminformatics, and 
systems biology databases and tools (Materials and Methods and 
table S1). On the basis of a power law regression (24) of pangenome 
rarefaction curves generated for both homologous genes and ortho-
logous gene clusters annotated in the Kyoto Encyclopedia of Genes 
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and Genomes (KEGG) (fig. S1), the genetic diversity remains open 
( = 0.8) but the functionally annotated metabolic subset appears to 
be closed ( = 1.9), suggesting that much of the genetic diversity yet 
to be cataloged will be associated with regulatory, repair, and other 
nonmetabolic functions. Even so, gap filling of 36 reactions (2.4% of 
all reactions) lacking an annotated gene was still necessary for 
biomass synthesis in the PanGEM reconstruction, so additional 
functional annotation efforts are needed to provide evidence for 
these missing gene-protein-reaction associations.

Using the PanGEM as a template, feasible and stoichiometrically 
balanced strain-specific genome-scale models (GEMs) for each 
sequenced organism (referred to as in silico strains) are generated 
using a compressed sensing (CS)–based approach (PanGEM Tool-
box; http://github.com/jrcasey/PanGem; Materials and Methods and 
fig. S2) and quality tested using a community standard (25). Before 
simulations, each in silico strain acclimates to a given environment 
(defined by in situ temperature, nutrient concentrations, and light 
spectra) by optimally adjusting the cell size, nutrient transporters, 

Fig. 1. Schematic of metabolic and physiological acclimation processes simulated by MSE. A single cell is shown at the center with several membrane transporters 
(colored rectangles) and macromolecular pools (graded circles). Four key modules are shown in expanded detail, described clockwise. (Top left) Metabolic networks 
differ for each of the 69 strains simulated. A multipartite graph of genes, reactions, and metabolites is shown for a particular strain, SS120. (Top right) Transporter abundances 
(n) are optimized according to a mechanistic model of substrate transport that resolves several different limitation regimes (diffusion limitation, growth limitation, porter 
limitation, and surface area limitation). Competition for resources between transporters results in deviations from the optimum n* across the range of ambient substrate 
concentrations S∞. (Bottom right) The downwelling irradiance spectrum selects the optimal distribution of pigments on the basis of absorption (Abs) spectra and the 
cellular energy demand, within experimental constraints. Excitons are shuttled to photosystems I and II from each electronic state of each light-harvesting pigment 
[divinylchlorophyll a (DV-Chl a), divinylchlorophyll b (DV-Chl b), and -carotene (-Car)]. Under excess light conditions, the photoprotective pigment zeaxanthin (Zeax) 
acts both to dissipate excess photons from light-harvesting pigments to heat and to quench singlet oxygen generated by the relaxation of triply excited chlorophylls a 
and b. (Bottom left) Macromolecular compositions are optimized within experimental constraints to maximize growth given the availability of nutrient and energy 
resources. Differences between environments in the size of each graded circle are intended to reflect changes in the levels of each macromolecular pool. Carbs, carbohydrates; 
dMets, dissolved (free) metabolites.
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pigments, biochemical compositions, and metabolic fluxes, accom-
plished with a sequence of experimentally and empirically con-
strained bilevel flux balance analysis (FBA) optimizations (called 
OptTrans and PhysOpt; Materials and Methods). Metabolic rates 
are then adjusted for strain-specific temperature dependence, pre-
dicted from proteome sequences with an amended machine 
learning algorithm [based on (26)] (Materials and Methods). 
Together, PanGEM Toolbox and MSE are intended to be suitably 
flexible for implementation in other microbial systems and are 
documented to guide users through reconstruction and simulation.

MSE simulations were implemented for 69 sequenced isolates 
representing all five major ecotypes of Prochlorococcus (data S1) on 
the Atlantic Meridional Transect cruise (AMT-13) in late summer 
of 2003. A suite of 66 physical, chemical, and biological measure-
ments from satellite optics, shipboard sensors, and discrete samples 
were interpolated at 10-m depth intervals from 10 to 200 m at 
32 stations from 48°N to 45°S, passing through the Senegalo- 
Mauritanian upwelling region (Fig. 2A and data S2). A subset of 
variables including temperature, solar irradiance, and nutrient concen-
trations were used as inputs to each simulation, while other variables 
were used for context and validation (figs. S3 to S5).

Leveraging a synoptic dataset of Prochlorococcus ecotype abun-
dances along the transect (9), predicted growth rates, metabolic 
rates, and biochemical compositions at the strain level were scaled 
up to populations. By assuming that each ecotype could be repre-
sented by its fittest strain in a particular sample location, the rates 
and compositions associated with each ecotype were weighted by 

their observed in situ abundances (Materials and Methods) to di-
rectly compare against measured, volumetric quantities.

Prochlorococcus population ecology and biogeochemistry
The predicted vertical structure in total Prochlorococcus population 
growth rates (Fig.  2C and fig. S6) was consistent with observed 
abundance profiles (2, 27), generally declining with depth and light 
intensity and in the top few meters because of photoinhibition and 
nutrient scarcity. While our approach considers only bottom-up 
controls, there was a remarkable correspondence at the population 
level between predicted growth rates and observed abundances 
throughout the transect (Fig. 2D). Overall, a nonlinear relationship 
emerged between observed abundances and predicted growth rates; 
a power law (of the form   dN _ dt   = B − m  B   x  ) provided a better fit 
(R2 = 0.79; df = 638) than a linear form (R2 = 0.40), suggesting a 
nonlinear density dependence of mortality. Direct taxon-specific in 
situ phytoplankton growth rate measurements are scarce (1, 2, 27) 
but follow a qualitatively similar pattern (Fig. 2D).

Within the total Prochlorococcus population, the predicted growth 
rates of each ecotype showed distinct environmental niches that 
corresponded to observed abundances (Fig. 2, E to I; shading shows 
growth rate and contours show observed population density). This 
correspondence supports the notion that growth rate is important 
for relative fitness. Generally, growth of HLII ecotype strains out-
paced others in the warmest environments where inorganic nitro-
gen concentrations were lowest and light was highest, while HLI 
strains were fittest in the midlatitudes. LLI and LLII/III ecotypes 

Fig. 2. Summary of AMT-13 cruise simulation. (A) Cruise track of the AMT-13 expedition during the fall of 2003. (B) Meridional sections of observed temperature (white 
contours), photosynthetically active radiation PAR; (yellow contours, logarithmically spaced), and dissolved inorganic nitrogen (DIN; heatmap). (C) Meridional sections 
of observed Prochlorococcus abundances (white contours, logarithmically spaced) and predicted population growth rates (heatmap). (D) Observed Prochlorococcus population 
abundance plotted against predicted population growth rates (black markers). Red and blue markers correspond to previously published datasets. (E to I) Meridional 
sections of measured Prochlorococcus ecotype abundances (white contours, logarithmically spaced) and predicted growth rates (heatmaps). Although the LLII/III ecotype 
was nearly absent from the entire transect, Johnson et al. (9) note that quantitative polymerase chain reaction primers for this ecotype may have been contaminated.
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overlapped in their optimal niche space around the deep chlorophyll 
maximum depth, below which growth rates were typically highest for 
strains belonging to the larger, higher–gene content ecotype LLIV.

At high latitudes, the temperatures, nutrient concentrations, and 
light levels near the surface correspond to those typical of the deep 
chlorophyll maximum in the central gyres, resulting in an outcrop-
ping of low light–adapted ecotypes. In the northern hemisphere, 
LLI was the dominant ecotype at the surface, both in our simula-
tions of growth rates and in observed abundance. Breaking the 
general trend of correspondence, we predicted high growth rates 
of low light–adapted ecotypes in the southernmost stations of the 
transect where the observed population density was low. This might 
reflect a dominant top-down control of populations in that region (28) 
that cannot be captured by the bottom-up growth model. It might 
also be noted that the AMT-13 transect was conducted during the 
late boreal summer and austral winter, and mixed layer depths at 
stations south of 22°S were greater than 140 m (based on the t = 
0.125 kg m−3 criterion). Hence, potentially important light history 
dynamics associated with deep convective mixing may be improperly 
captured by our steady-state model.

At stations where these direct comparisons were possible, the 
contribution of Prochlorococcus to total depth-integrated gross 
oxygen production (fig. S7) followed an expected trend, contributing 
less (15 ± 14%) in high-chlorophyll regions (>15 mg chlorophyll 
a m−2) and more (52 ± 31%) in the oligotrophic regions, in line with 
previous reports (1, 3). Although a direct comparison was not pos-
sible, a subsurface maximum in the f-ratio (the proportion of nitro-
gen uptake supplied by nitrate) (29) was predicted along the top of 
the deep chlorophyll maximum near the equator and lower sub-
tropics (fig. S8), a hypothesis with implications for the contribution 
of Prochlorococcus to the biological carbon pump and that could 
conceivably be tested in situ (30).

The elemental composition and energy content of phytoplankton 
constrain marine food webs and the cycles of carbon, nitrogen, phos-
phorus, and other bioelements (31). Predicted carbon-to-nitrogen 
molar ratios of Prochlorococcus populations varied from 5.4 to 
6.8 along the meridional transect (fig. S9), with higher values asso-
ciated with deeper or higher-latitude samples. This range and 
pattern is consistent with previous measurements of Prochlorococcus 
elemental stoichiometry in the Sargasso Sea (5.4 to 7.4) (20). The 
energy available for consumers (here quantified by the enthalpy of 
combustion of biomass) also varied with light (68% of the predicted 
variance), with dry biomass spanning the range from 27.4 KJ gDW−1 
near the surface to 30.3 KJ gDW−1 below the euphotic depth (fig. S10). 
Population elemental stoichiometry and energy content reflect both 
the strain composition of each population and the phenotypic states 
of those strains that, in turn, reflect a great many underlying physio-
logical processes, including alterations to macromolecular compo-
sitions and photoacclimation.

Physiological and metabolic acclimation
Departures in environmental variables from ideal laboratory growth 
conditions were reflected in changes to optimal cell physiology and 
metabolic flux distributions. Acclimation strategies involved alter-
ing uptake kinetics through changes in transporter abundances and 
cell size, altering elemental stoichiometry and growth yields through 
changes in macromolecular compositions, and altering photosyn-
thetic performance through changes in pigmentation and electron 
flow pathways. The effect of allowing for physiological acclimation 

can be appreciated by monitoring phenotypic changes that give rise 
to fitness gains. Compared with strains prevented from acclimating 
beyond their nutrient-replete batch culture phenotype, transporter 
acclimation increased growth rates by 43 ± 26% and macromolecular 
and photoacclimation provided further growth rate gains of 47 ± 
25% (fig. S11). Especially under low-light conditions, physiological 
acclimation was necessary to acquire sufficient reductant to exceed 
nongrowth associated maintenance adenosine triphosphate (ATP) 
demands. For example, the threshold for net positive growth of a 
high light–adapted strain (MIT 9312) acclimated to ideal laboratory 
conditions required a minimum flux of 17.7 mol photons m−2 s−1 
but was able to acclimate to as low as 2.1 mol photons m−2  s−1. 
Photoacclimation may therefore provide an explanation for HLII 
cells found deeper in the water column (9, 10) than might be expected 
from laboratory isolates (17). Thus, in addition to providing fitness 
gains within the feasible growth niche of each strain, physiological 
acclimation effectively extends the depth horizon and geographic 
range for growth.

The abundances of key nutrient transporters (e.g., ammonia, 
nitrite, nitrate, and phosphate) are regulated by a trade-off between 
synthesis costs, available space on the membrane, and uptake rates. 
OptTrans explicitly accounts for these trade-offs using a mechanistic 
model that combines quantitative proteomics, molecular modeling, 
and FBA to predict the optimal abundance of each transporter and 
the optimal cell size (Materials and Methods) (32). For any modeled 
strain, optimal cell sizes increased in proportion with external re-
source concentrations, but average population cell sizes (fig. S12) 
were driven more by community composition than by acclimation 
processes alone, indicating the importance of cell size as an adaptive 
trait. Our model explicitly differentiates states of nutrient limitation: 
Diffusion limitation occurs when external substrate concentrations 
limit the flux toward the cell below demands, and membrane 
surface area limitation occurs when the space afforded to transporters 
is exhausted, resulting in suboptimal uptake. When external sub-
strates exceed a critical concentration S*, uptake rates are held at the 
level demanded by some other limiting resource (e.g., another 
limiting nutrient or the maximum growth rate). As expected, diffusion 
limitation was prevalent for nitrite and nitrate transport in the lower 
latitudes above the nutricline, where concentrations were routinely 
in the low-nanomolar range. Observed ammonium concentrations 
were predominantly just below the predicted S* (fig. S13), and 
transport was often limited by membrane surface area. It is possible 
that additional nitrogen sources that were not resolved in our simula-
tion, especially urea and amino acids, supply the remaining deficit 
in nitrogen demanded by maximal growth rates; however, the com-
petition for membrane space among multiple transporters would be 
even more prevalent. Phosphate concentrations were mostly above 
S* throughout the transect, with the notable exception of the surface 
layer between 20°N and 30°N where concentrations approached a 
diffusion-limited regime, a region known to exhibit seasonal phos-
phorus limitation (33).

Among strains capable of transporting and assimilating all three, 
nitrogen was preferentially taken up in the order as follows: ammonia, 
nitrite, and nitrate. As a consequence of the high energy costs asso-
ciated with nitrate and nitrite reduction, preference for reduced 
nitrogen was most pronounced in low-light environments, where a 
sensitivity analysis (Materials and Methods) indicated energy 
limitation, although there is also a small effect (in the same order) 
on encounter rates due to differences in molecular diffusivity. 
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Several low light–adapted strains acclimated to growth in these low-
light, high-inorganic nitrogen environments were further able to 
reduce the energy demands of nitrogen assimilation by redirecting a 
substantial portion (up to 48%) of the flux from the ATP-dependent 
glutamine synthetase–glutamate synthase complex (glutamate 
aminating) to the reduced form of nicotinamide adenine dinucleo-
tide phosphate (NADP+)–dependent glutamate dehydrogenase (GDH; 
2-oxoglutarate aminating). The auxiliary role of GDH in nitrogen 
assimilation under low-light, high-nitrogen conditions has been 
recognized in the model freshwater cyanobacterium Synechocystis 
(34) but not in Prochlorococcus (35).

Under resource-limiting conditions, growth rates can be further 
increased through the rebalancing of macromolecular pools to 
reduce the quota of that resource, thereby increasing yields. Particu-
larly, in regions where inorganic nitrogen sources were scarce (e.g., 
in the upper water column of the subtropical gyres), protein content 
was reduced, leaving the remaining cellular mass to be partitioned 
predominantly between either carbohydrate or lipid stores. Because 
the energy requirements for de novo synthesis of lipids is consider-
ably higher than of carbohydrates, allocating C to lipids was favored 
near the surface, while carbohydrates were relatively enriched just 
above the deep chlorophyll maximum depth interval. This solution 
points to lipid storage as an auxiliary electron sink to cope with 
high-light, low-nitrogen conditions. The resulting changes in the 
energy content of biomass can therefore be decoupled from synoptic 
changes in cellular C:N ratios, a prediction with implications for 
food web dynamics and trophic transfer efficiency (36). The 
PhysOpt algorithm also predicted subtle changes to other macro-
molecular pools, including reductions in P-containing compounds 
(found in RNA, in cell wall–associated lipopolysaccharides, and in 

other metabolites, vitamins, and cofactors) in the upper water 
column near 26°N where phosphate was most depleted (≤20 nM).

Changes in photophysiology and photosynthetic performance 
were predicted across latitudinal and vertical light gradients. In 
regions with high light and low nitrogen, the photoprotective pigment 
zeaxanthin increased while light-harvesting pigments -carotene 
and divinylchlorophylls a and b decreased, providing a mechanism 
for nonphotochemical quenching of excess photons to be dissipated 
as heat. -Carotene contributed a modest 22 ± 9% of total light- 
harvesting pigment absorption across all strains but appears to be 
somewhat favored by the HLII ecotype (28 ± 7%). These predictions 
are consistent with observations of Prochlorococcus isolates grown 
under variable light intensity and quality (37, 38). Spectral tuning also 
influenced optimal pigmentation; the gradual shift in downwelling 
irradiance spectra favors the de novo synthesis of divinylchlorophyll 
b over divinychlorophyll a in deeper samples, a well-documented 
phenomenon in naturally occurring Prochlorococcus populations 
(17, 39, 40) and phytoplankton more broadly (fig. S14) (41).

Strain-specific differences in key photosynthesis parameters were 
derived from modeled photosynthesis versus irradiance curves at 
each station. The predicted meridional variation in the initial slope 
(), assimilation number (  P max  B   ), and the photosynthetic saturation 
parameter (Ek) was remarkably consistent with both in situ obser-
vations (42) and laboratory experiments (Fig. 3) (17). The quantum 
yield (QY) of photosynthesis, defined here as the moles of carbon 
fixed by ribulose bisphosphate carboxylase per mole of photons 
absorbed by the light-harvesting pigments, is a holistic measure of 
photophysiological states. In general, QY approached (but did not 
reach) a theoretical limit of 0.125 mol C (mol photons)−1 and declined 
because of the temperature dependence of biosynthetic rates at lower 

Fig. 3. Photoacclimation and photosynthesis. (A) Predicted QY of photosynthesis (moles C fixed by ribulose 1,5-bisphosphate carboxylase per mole photons absorbed 
by light-harvesting pigments) over the range of in situ irradiance levels for all strains (small markers), ecotypes (large markers), and the total population (large black 
markers) across all samples. (B) Predicted photosynthetic rate normalized to the predicted chlorophyll against irradiance for all strains, ecotypes, and the total population 
across all samples. Box-and-whisker plots of meridional variations in (C) the assimilation number (  P m  B   ) and (D) the photosynthetic saturation irradiance (Ek), derived from 
least-squares regression of predicted photosynthesis-versus-irradiance curves at each station.
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irradiances that covaried with in situ temperatures (Fig. 3). Sub-
surface maxima in the QY clustered primarily by ecotype, with 
overlapping optima from high to low light in the order HLII, HLI, LLI, 
LLII/III, and LLIV. The same general order was found for predicted 
optimal growth temperatures (OGTs) (data S4 and fig. S15), perhaps 
because of the covariation of temperature and light. Notably, this same 
order describes the phylogenetic evolution of the Prochlorococcus 
lineage, with deep-branching LLIV strains occupying the lower 
euphotic zone and more recently diverged ecotypes expanding their 
niche range toward the sea surface (15).

Several alternative electron flow pathways were active under 
high-light, low-nitrogen conditions, including the Mehler reaction, 
pseudo-cyclic electron flow around photosystem I, and ferredoxin- 
NADP+ reductase. In some strains, excess reductant is dissipated by 
the plastoquinone terminal oxidase (PTOX) reaction, while in other 
strains lacking PTOX, the generation of singlet oxygen and other free 
oxygen radicals is unavoidable, requiring glutathione or thioredoxin 
peroxidases. Partial recovery of the photorespiratory by-product 
2-phosphoglycolate was only possible for a subset of the LLIV 
strains, while other ecotypes are known to excrete substantial amounts 
of the hydroxy acid glycolate (43). Although a comprehensive analysis 
of all strains across the transect was not possible, flux variability 
analysis (Materials and Methods) (44) indicated that glycolate ex-
cretion was favored by strains lacking a complete photorespiratory 
pathway in high-light, rather than low-light, conditions, supporting 
the notion of photorespiration as an additional alternative electron 
flow pathway (45, 46).

Metabolic microdiversity and the “nano-niche”
A survey of growth capabilities and pathway enrichment analysis 
among the core and accessory reaction subsets of the Prochlorococcus 
pangenome revealed the commonality of metabolic features at 
different taxonomic resolutions. The core subset, reactions common 
to all strains, included much of the photosynthetic, respiratory, and 
central carbon metabolism pathways, as well as the anabolic path-
ways for amino acids, lipids, light-harvesting pigments, vitamins, 
and cofactors. The accessory subset, reactions present in only some 
strains, was more widely distributed among pathways, especially 
those that enable access to nutrient sources in specific environ-
ments (fig. S15). For example, accessory genes associated with the 
LLIV clade included an enrichment in chitin-degrading and other 
polysaccharide-degrading enzymes and transporters, resources that 
are expected to supplement their energy-limited niche below the deep 
chlorophyll maximum depth. While our metabolic networks resolve 
the diversity of mixotrophic potential across the Prochlorococcus 
pangenome, comprehensive determinations of compound-specific 
dissolved organic matter concentrations in the marine environment 
remains an analytical challenge. Although exogenous organic 
substrate uptake was not included in our AMT simulations, ecotype- 
specific patterns were evident from an analysis of growth capabili-
ties on various sole N, P, and S sources. For example, LLI and LLIV 
strains were universally able to grow on nitrite as a sole N source, 
while only four strains from other ecotypes shared that capability 
(fig. S16).

While some metabolic strategies could be generalized at the 
ecotype level, even closely related strains with only subtle differences 
in their metabolic networks occupied different niches in physical 
and chemical space, coined a nano-niche (47). To illustrate this point, 
a head-to-head comparison was conducted between two HLII strains, 

MIT 9314 and SB, which are closely related both phylogenetically 
(13) and in terms of overlap in their metabolic networks (Jaccard 
similarity of 97.3%; fig. S2). Predicted growth rates of both strains 
were similar near the surface in the subtropics, but MIT 9314 
outpaced SB in the surface layer of the equatorial region and SB 
outpaced MIT 9314 at higher latitudes and in deeper samples. 
A metabolite sensitivity analysis (Materials and Methods), used in 
this context as diagnostics of nutritional and energy status in key 
metabolites, indicated that the transition depth from nutrient 
limitation to light limitation occurred higher in the water column 
for SB, whereas MIT 9314 was more pervasively nitrogen limited 
(Fig. 4). Inspection of the subsets of reactions unique to each strain 
provided the mechanistic basis for their niche differentiation. MIT 9314 
supplemented the tricarboxylic acid cycle intermediate oxaloacetate 
via the anapleurotic carbon fixation enzyme phosphoenolpyruvate 
carboxykinase (PEPCKase), increasing its relative fitness with respect 
to SB in the surface layer of the equatorial region where carbon was 
essentially growth limiting for this strain. The coupling of PEPCKase 
to a truly incomplete tricarboxylic acid cycle in Prochlorococcus (48) 
is potentially unique and has not been demonstrated in vivo. Near 
the deep chlorophyll maximum and at higher latitudes, SB leveraged 
its access to nitrate and nitrite transport and reduction to outpace 
MIT 9314, which relied on ammonia as its sole nitrogen source. The 
two strains converged in fitness below the 1% light depth because of 
the diminishing returns of oxidized nitrogen assimilation. Reac-
tions attributed to the difference in niche optima between the two 
strains were validated with simulated knock-in mutants expressing 
the missing subsets in each. The resulting offset in the depth inter-
vals for optimal growth were also reflected in their predicted OGTs 
(29.06°C for MIT 9314 and 27.86°C for SB; data S4).

Mechanistic, genome-scale modeling of cellular metabolism and 
physiology offers readily interpretable and, importantly, directly 
testable hypotheses in unprecedented detail. Moreover, models that 
resolve the molecular scale are needed to interface with the deluge 
of environmental omics data. However, the adoption of GEMs and 
constraint-based methods as prognostic tools in environmental 
microbiology and microbial ecology has been limited thus far 
(49–51). The traditional flux balance approach has routinely been 
applied to predict growth rates and yields of monoclonal iso-
lates in chemostat, given a priori knowledge of not only internal 
stoichiometry and external resource availability but also, crucially, 
resource acquisition rates and biomass compositions, both of which 
vary widely in natural systems. Explicit, mechanistic modeling of 
acclimation processes (nutrient acquisition, photosynthetic archi-
tecture, and biochemical compositions) are therefore an important 
component of the model and a key factor in capturing the flexibility 
of relative fitness. By canvasing the microdiversity of physiological 
and metabolic traits within populations, our constraint- based op-
timization approach enables a bottom-up perspective on microbial 
population physiology, metabolism, and growth in diverse environ-
ments at multiple taxonomic resolutions. In addition to the many 
testable predictions of cell stoichiometry, nutrient uptake, meta-
bolic rates, and photophysiology, the correspondence of the pre-
dicted optimal growth rate patterns with observed abundances is 
intriguing, and the emergent relationship could provide a calibration 
for a density-dependent mortality closure with broader application.

Implementation of this framework in regions beyond the AMT 
transect, where appropriate environmental data are already avail-
able, would provide testable predictions on the relative abundance, 
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composition, and activity of Prochlorococcus ecotypes. However, 
because of the streamlined nature of Prochlorococcus, much of the 
metabolic diversity within the accessory subset of the pangenome is 
associated with the transport and metabolism of exogenous organic 
substrates that are neither routinely measured in situ nor resolved 
in our current implementation. Exchange of these resources within 
Prochlorococcus populations may provide stability to strain diversity 
through cross-feeding and division of labor. This is one avenue in 
which pangenome-scale modeling may contribute in the future, 
because many specific metabolite exchanges could, in theory, be 
resolved. Allowing the virtual organisms to feed back on their 
resource environment could lead to prognostic applications (52), 
perhaps embedded in a coarser-grained general population. Although 
currently still computationally prohibitive, with effort on code 
development and optimization, this is a plausible goal. The degree 
of metabolic detail resolved makes these tools a good prospect for 
exploring community interactions.

MATERIALS AND METHODS
Environmental data
In situ and remote sensing data were used as inputs for simulations. 
A suite of 66 measured in situ variables from the 2003 AMT-13 
cruise, including temperature, nutrients, cell abundances, and optical 
properties, are described in detail in the Supplementary Materials 
(section S1.1) and are provided as a gridded dataset (data S2). To 
compute downwelling irradiance, we combined in situ optical profiler 

diffuse spectral attenuation coefficients with synoptic measurements 
of satellite cloud cover as a mask over a model of clear-sky direct 
and diffuse spectral radiation. Simulations conducted in this study 
were restricted to a subset of 32 stations (from a total of 78 casts at 
54 stations) for which ecotype abundance data (9) were available.

Biochemical compositions
Biochemical compositions, physiological traits, and constraints on 
their ranges were assigned to each strain. Initial compositions 
represent the nutrient-replete batch-acclimated state of isolates as a 
starting point for acclimation. Data assigned to each strain were 
derived both from literature sources and from measurements taken for 
this study. Metabolomic data were collected for five Prochlorococcus 
strains under optimal batch conditions: MED4 (HLI), MIT 9312 
(HLII), NATL2A (LLI), MIT 1304 (LLII/III), and MIT 9313 (LLIV). 
Strain MED4 was analyzed for macromolecular compositions 
(carbohydrate, lipid, protein, DNA, RNA, and divinylchlorophyll a) 
as well as elemental composition (particulate C, N, and P) and dry 
weight as in (53) (with modifications) under nutrient-replete and 
nitrogen and phosphorus stress conditions. Detailed analytical 
methods and a summary of literature datasets used in this study are 
provided in the Supplementary Materials (section S1.5 and data S7).

Pangenome-scale metabolic network assembly
An aggregate GEM was reconstructed to represent the full set of 
metabolic functions encoded in the pangenome of Prochlorococcus 
(PanGEM). The current pangenome consists of 77 sequenced isolates, 

Fig. 4. Metabolic microdiversity. (A) Meridional section of the relative growth rate of strains SB and MIT 9314. A positive value indicates the percentage increase in 
growth rate for strain SB relative to strain MIT 9314. (B and C) Meridional sections of resources limiting the growth of strains SB and MIT 9314. Warmer colors correspond 
to increasingly nitrogen-limited phenotypes, while cooler colors correspond to increasingly energy (light)–limited phenotypes.
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seven metagenome-assembled genomes, and 564 single-cell ampli-
fied genomes, comprising 866,894 unique open reading frames. 
Translated coding sequences were mapped to KEGG orthologs (KOs) 
using a bidirectional blast with KEGG’s kofamKOALA, pairing the 
number of unique KOs to 2084. A database containing nucleotide 
sequences, translated amino acid sequences, header strings, database 
identifiers (National Center for Biotechnology Information, Joint 
Genome Institute, and KEGG), metadata, and descriptive statistics 
for each genome was compiled; this database was the basis for draft 
reconstruction of the PanGEM network. The draft reconstruction was 
then manually curated following a standard process (section S1.3) (54).

Semiautomatic strain GEM reconstruction
A novel approach to automatically extract functional, stoichiomet-
rically consistent strain GEMs from the PanGEM was developed. By 
definition, any strain is a subset of the PanGEM; however, simply 
excluding the remaining reactions often results in lethal deletions. 
In lieu of manual curation for each strain, we use a CS algorithm to 
identify an essential subset of reactions that are required to synthesize 
all biomass components de novo and satisfy the growth objective. 
From this essential reaction subset, we append reactions specific to 
each strain. A detailed description of PanGEM and the CS algorithm 
is provided in the Supplementary Materials (section S1.4).

Flux balance analysis
A chemical flux balance can be derived from the law of mass action 
(section S1.2). Assuming a steady state, a set of optimal flux distri-
butions can be predicted that maximizes an objective function by 
solving the linear program

   
  v ∈  ℝ   n     

maximize
 
  

 c   T  v
   

subject to
  

 
Sv = 0,

  
 v   lb  ≤ v ≤  v   ub 

 
    (1)

where S is the stoichiometric matrix, v is the vector of fluxes and its 
respective lower and upper bounds (vlb and vub), and c is a pre-
defined coefficient vector whose entries define the weighted set of 
reactions that determine fitness. Here, the objective function is 
defined as growth rate, the rate of synthesis of 1 g of ash-free dry 
biomass of specified composition. Several variations of FBA and 
sensitivity analyses are used throughout this article, as described in 
the Supplementary Materials (section S1.2).

Microbial Simulation Environment
Two sequential acclimation steps, OptTrans and PhysOpt, are 
performed on each strain GEM at each environmental grid point. 
Physiological data specific to each strain, or to its closest phyloge-
netic relative, are initially assigned to the corresponding GEM to 
represent its phenotype when grown under optimal laboratory 
conditions. Physiological data, collected as a part of this study 
(data S4 to S7) and from the literature (data S8), include cell size 
spectra, biochemical compositions (macromolecular pools, pigments, 
and metabolites), maximum carbon fixation rates, and maintenance 
requirements. Boundary constraints for all parameters (e.g., molecu-
lar compositions, cell size, and metabolic rates) are assigned to each 
strain GEM by compiling experimental data collected under a wide 
range of growth conditions. The first bilevel optimization, OptTrans, 
searches for the optimal distribution of metabolic fluxes, transporter 

abundances, and cell size that maximizes fitness, given the external 
concentration of each nutrient (ammonia, nitrite, nitrate, and phos-
phate). Quantitative proteomics data and molecular modeling are 
used to derive catalytic rates and transmembrane domain dimen-
sions for each transporter, necessary to predict external substrate 
concentration–dependent uptake rates (32). The calculated optimal 
uptake rates, cell sizes, and transporter abundances are then used to 
constrain the second bilevel optimization, PhysOpt. Given our 
experimentally determined constraints on cellular biochemical com-
positions (data S5), PhysOpt searches for the optimal biomass 
composition of several macromolecular pools (e.g., protein, DNA, 
RNA, cell wall, lipid, carbohydrates, minerals, vitamins, osmolytes, 
and other metabolites). Simultaneously, pigment compositions 
(the light-harvesting pigments divinylchlorophylls a and b, -carotene, 
and the photoprotective pigment zeaxanthin) are optimized accord-
ing to the alignment of pigment-specific absorption spectra with the 
observed in situ downwelling irradiance spectrum, again with the 
objective of maximizing fitness. This coupling therefore takes into 
account the costs of synthesizing each macromolecular pool or 
pigment de novo, in the holistic context of total cellular nutritional 
status, photon flux demands, metabolic capabilities, and biomass 
composition, specific to each strain. The entire MSE procedure is 
intended to mechanistically represent the processes by which 
microbes acclimate to their environment at the molecular scale, 
while being faithful to the trade-offs of altering their physiology. 
A more thorough discussion and accompanying illustrations for 
OptTrans, PhysOpt, and the transport and photosynthesis models 
are provided in the Supplementary Materials (section S1.6).

Temperature dependence of metabolic rates
Growth rates and metabolic fluxes were adjusted for temperature 
effects by comparing in situ growth temperatures to a model of 
temperature-dependent growth, parameterized for each strain. Our 
approach provides a strain-specific parameterization while avoid-
ing the effects of adaptive laboratory evolution, which can be 
substantial (55). First, the Arrhenius activation energy Ea was calcu-
lated on the basis of growth rates determined in batch cultures of 
12 Prochlorococcus strains (9, 56). A modification of a previously 
proposed model (57), but which preserves the Arrhenius parameter-
ization, was used to capture the dynamics of a dimensionless growth 
rate constant that was then applied to metabolic rates and growth 
rates. The OGT parameter was predicted for each strain from 
proteome sequences using the machine learning algorithm TOME-
cool. Among several algorithms, a support vector machine regression 
achieved the best performance (coefficient of determination score, 
R2 = 0.88). The OGT dataset from TOME 1.0 (26) was expanded to 
include additional psychrophilic and psychrotolerant taxa (58, 59), 
resulting in a training dataset of 6020 microorganisms (https://
github.com/EngqvistLab/tome_cool; section S1.7).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl4930
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