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Abstract Time series of phytoplankton carbon biomass are scarce yet may provide important insights
into ocean productivity and carbon export to depth via the oceanic biological pump. We combine recent
flow-cytometric measurements with pigment concentrations and other standard measurements to reconstruct
taxon-specific phytoplankton carbon biomass in the Sargasso Sea over 22 years, using a multiple regression
approach. The reconstructed series reveal an increasing trend (~3% per year) in total phytoplankton carbon,
apparently driven by increasing nutrient supply by vertical mixing associated with a shift to a negative phase
in the winter North Atlantic Oscillation index. Also, the reconstructed eukaryote biomass fraction shows a
multiannual shift from ~45% in the early 1990s/late 2000s to ~70% in the late 1990s/early 2000s.We hypothesize
that a multiannual shift in the seasonal pattern of mixing may have stimulated and restructured the eukaryote
community while suppressing prokaryote populations by increasing photodamage and grazing mortality.

1. Introduction

The carbon biomass of marine phytoplankton plays a key role in determining the available food for higher
trophic levels, the carbon export by sinking particles, and the primary productivity of the world’s oceans
[Geider et al., 1998; Behrenfeld et al., 2005; Westberry et al., 2008]. Yet it is only in recent years that efficient
methods have been developed to measure phytoplankton carbon by flow cytometry [Veldhuis and Kraay,
2000; DuRand et al., 2001; Worden et al., 2004; Graff et al., 2012; Casey et al., 2013]. Measured chlorophyll a
(chl a) concentrations have traditionally been converted to carbon biomass using empirical formulae [e.g.,
Cloern et al., 1995], but these tend to imply large uncertainties due to taxonomic variability and difficulties
in predicting nutritional and photoadaptive state. Long-term ocean time series for phytoplankton carbon
biomass therefore remain scarce, compromising efforts to understand the effects of climatic variability on
ocean biogeochemical cycles and to develop predictive models. There is also an increasing demand for
biomass data that is resolved into groups, such as size classes or functional types, in order to ground truth
remote sensing estimates and to better understand and model processes, such as primary production, that
may strongly depend on the structure of the phytoplankton community.

The Bermuda Atlantic Time-series Study (BATS) is a long-term sampling program located in the western North
Atlantic subtropical gyre or Sargasso Sea (see Lomas et al. [2013] for a recent review). It has generated an
unusually complete and long-term (24 year) open-ocean data set and is consequently a key resource for
investigating seasonal and longer-term biogeochemical dynamics in the subtropical gyres (the world’s largest
ecosystems covering>40%of the Earth’s surface) and for developing and assessing large-scale biogeochemical
models and satellite algorithms [e.g., Saba et al., 2010]. That said, the BATS time series are likely still too short
to reflect anthropogenic climate changes in ocean primary productivity and biomass, due to the relatively
strong interannual and multiannual/decadal variability in these quantities [Martinez et al., 2009; Boyce et al.,
2010, 2012;Henson et al., 2010], as does not appear to be the case for pCO2 and carbonate chemistry parameters
[Bates, 2012; Bates et al., 2012].

In this study we combine recent flow-cytometric data with BATS “core” variables and a multiple regression
model to reconstruct taxon-specific phytoplankton carbon over the entire BATS record. We then attempt to
explain the reconstructed biomass variability as a product of biogeochemical/ecosystemprocesses, focusing on
nutrient supply, mixing-induced light shock, and possibly-mixotrophic grazing. The reconstruction confirms a
22 year increasing trend in total phytoplankton biomass [Lomas et al., 2010a] and also reveals multiannual

WALLHEAD ET AL. ©2014. American Geophysical Union. All Rights Reserved. 825

PUBLICATIONS
Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2013GB004797

Key Points:
• Twenty-two year series of group
phytoplankton carbon reconstructed
for Sargasso Sea

• Increasing trend in total carbon and
phase shifts in community structure

• Trend/shifts likely due to varying
frequency/seasonality of
vertical mixing

Supporting Information:
• Readme
• Text S1–S7 and Figures S1–S12
• Table S1
• Table S2
• Table S3
• Table S4
• Table S5

Correspondence to:
P. J. Wallhead,
philip.wallhead@niva.no

Citation:
Wallhead, P. J., V. C. Garçon, J. R. Casey,
and M. W. Lomas (2014), Long-term
variability of phytoplankton carbon
biomass in the Sargasso Sea, Global
Biogeochem. Cycles, 28, 825–841,
doi:10.1002/2013GB004797.

Received 17 DEC 2013
Accepted 22 JUL 2014
Accepted article online 26 JUL 2014
Published online 12 AUG 2014

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9224
http://dx.doi.org/10.1002/2013GB004797
http://dx.doi.org/10.1002/2013GB004797


variations in phytoplankton community structure, comparable to those observed in the North Pacific
subtropical gyre [Corno et al., 2007] but smoother and less dramatic than the “regime shifts” observed in the
Caribbean Sea [Taylor et al., 2012]. Our results challenge traditional assumptions that link enhanced eukaryotic
algal biomass with enhanced nutrient supply and provide empirical constraints on long-term phytoplankton
biomass variability which are critically needed to develop and validate large-scale biogeochemical models.

2. Methods
2.1. Data Preprocessing

We obtained flow-cytometric phytoplankton carbon data from J. Casey [Casey et al., 2013] and raw data for
BATS core variables from the project website (http://bats.bios.edu). Group-resolved phytoplankton carbon
was calculated from flow-cytometric estimates of cell abundance for each group and carbon per cell derived
from forward light scatter [see Casey et al., 2013]. Mixed layer depths (MLDs) were derived from the BATS
conductivity-temperature-depth data (2m resolution) using a variable σt criterion, where σt is the seawater
density (kgm�3) referenced to atmospheric pressure without temperature adjustment [Sprintall and Tomczak,
1992; Steinberg et al., 2001; Lomas et al., 2013]. After inspecting a large number of individual profiles, we decided
that a Δσt equivalent to 0.2°C temperature drop relative to 10m depth values gave reasonable MLDs, mostly
including the remnant layer of diel mixing and avoiding diurnal stratification effects [Brainerd and Gregg, 1995].
Only data shallower than 275m and within a radius of 0.3° from the nominal BATS location (64.17°N, 31.67°W)
were considered in our analyses. Zero values for nonnegative variables (such as pigments) were replaced with
the minimum-observed nonzero value in order to avoid problems with transformations (see below).

The raw data were first block averaged onto a depth-time grid with 12 nominal depths: (1, 10, 20, 40,…, 160, 200,
and 250) m and nominal times at the centers of seasonal windows: “Winter”= January-February-March,
“Spring”=April-May-June, “Summer”= July-August-September, and “Fall”=October-November-December. This
gridding serves to (1) facilitate the matchup between core and phytoplankton carbon variables, (2) allow
standard errors (SEs) for the data to be estimated from the “replicate” measurements within each block,
(3) promote the normality of the data (by the Central Limit Theorem), (4) simplify the autocorrelation structure
of the time series, and (5) reduce the tendency to confuse temporal variations with advected spatial variations
in the sampled region. SEs were estimated by smoothing the variance estimates from individual blocks as
a function of the block mean (Gaussian kernel, half width = 0.2 × the range of mean values) then taking

SE¼ n�1=2σ̂, where σ̂2 is the smoothed variance and n is the number of replicates (usually n=3–6, including
one sample close to the nominal depth per cruise, with 15–30 days between cruises). This does neglect
correlation between replicates but also neglects finite block extent and systematic variation within blocks and
generally gave reasonable SEs. For MLD and temperature, multiple profiles were sampled during each cruise;
hence, raw data were preaveraged onto months (and if necessary grid depths) to ensure conservative SEs.

2.2. Time Series Analysis

To limit the number of analyses, wemostly consider time series of averages over seasons and a fixed “euphotic”
depth of 140m, a ~0.1% light level [Siegel et al., 2001] that includes ~90% of the total phytoplankton biomass
[Casey et al., 2013]. These were estimated by trapezoidal integration of the gridded data, by default allowing
up to 35m extrapolation of the shallowest/deepest value toward the upper/lower limit (otherwise excluding
the profile). SEs were estimated by treating the subseasonal vertical averages as replicates and applying the
above smoothing method.

Long-term variability was first analyzed “nonparametrically” by applying a 3 year running mean to the data
series y(t). SEs for the 3 year means were propagated from the seasonal data SEs assuming independent
(but unequal variance) errors, and confidence intervals (CIs) were constructed via a normal approximation.
The 3 year means were extended to the limits of the series, neglecting boundary bias [Hastie et al., 2009].
Second, the series were analyzed parametrically by fitting the model:

yi′ ¼ β0 þ β1ti þ δ β2�4; tið Þ þ εi (1)

where the prime denotes a Box-Cox transformation with parameter λ: y′= λ� 1(y λ� 1) [Box and Cox, 1964].
A suitable power transformationwas thus determined from the data (λ = 0 gives a log transform). The parameter
β1 describes the long-term trend, and β2–4 are seasonal contrast parameters (3 degrees of freedom, allowing
all possible variations in seasonal means that are cyclical and zero sum over four seasons). The remaining
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variability is modeled as a first-order autoregressive (AR1) process: ε~N(0, C) where Cij ¼ σ2ε ρ
h�1 ti�tjj j, with

autocorrelation parameter ρ and step size h= 0.25 years. Parameters were fitted jointly by maximum
likelihood estimation with the usual neglect of the implicit truncation in the distribution of ε [Abrevaya, 2002]
and applying the [Doran et al., 1992] bias correction for ρ̂ (see Text S1 in the supporting information). Tests
of model adequacy were performed on the fit residuals after prewhitening to remove the AR1 correlation,
using the Cholesky decomposition of Ĉ�1, and studentizing to remove the effects of fitted parameters on
homogeneity of variance [Montgomery et al., 2012]. Tests of normality (Lilliefors), independence (Ljung-Box),
and homogeneity of variance (Koenker-Bassett) seldom flagged a significant lack of fit. CIs for {λ, ρ} were
computed using the Fisher information and a normal approximation (this gave close-to-nominal coverage in
simulations; see Text S2). In many cases the CIs for λ excluded zero or one half, thus rejecting the simpler log
and square root transforms; usually, the lower CI limits for ρ were> 0 and Durbin-Watson tests on residuals
from fits assuming ρ= 0 rejected the no-autocorrelation model.

Trend significance was tested by a t test of the hypothesis β1 = 0, using Ĉ�1 to compute SEs (this gave accurate
Type I error rates in simulations; see Text S1). To measure the trend on the original scale, we define the “trend
increase” T as the % difference between expected annual means in 1990 versus 2010, normalizing by the
1990 value. These means were averages of seasonal expected values, estimated by integrating the fitted
distribution of y (Text S3; note that this fit includes all the available data from 1989 through 2011/2012).
Analysis of the reconstructed data suggested the addition of a “multiannual shift” effect to measure variability
associated with the reconstructed phase shifts in community structure. We therefore added to equation (1) a

“smoothed top-hat” effect f tð Þ ¼ β5 tanh t�t1ð Þ
τ þ tanh � t�t2ð Þ

τ

� �
, where (t1, t2) = (1997.5, 2005.5) years, τ =1year,

and β5 is an additional free parameter. The multiannual shift S was then defined as the % difference between
expected annual means in 1990 versus 2001, excluding trend effects (centered on 2001) and normalizing by
the 1990 value. CIs for (T, S) were derived by a Monte Carlo method that gave close-to-nominal coverage in
simulations (Text S2).

2.3. Data Reconstruction

For phytoplankton carbon (mg C m�3), analysis of long-term variability was restricted by the fact that regular
measurements have only been made since 2004. We attempt to lift this restriction by predicting group
phytoplankton carbon from BATS “core” variables that have been sampled since 1989. As predictors we use
all regularly sampled high-performance liquid chromatography (HPLC) pigments (ng/kg; see Table S3) as
these inform about the relative abundance and taxonomic composition of the phytoplankton. Dissolved
concentrations (μmol/kg) of nitrate-plus-nitrite N +N and soluble reactive phosphate “PO4”were included as
Sargasso Sea phytoplankton are thought to be mainly nitrogen limited [Lipschultz et al., 2002; Glover et al.,
2007], with phosphorus playing a secondary role [Lomas et al., 2004, 2010b; Moore et al., 2008] (note that
long-term ammonium time series were not available, and autoanalyzer data were used in lieu of sufficiently
complete series from more sensitive methods [Lipschultz, 2001; Lomas et al., 2010b]). Particulate organic
carbon and nitrogen (POC and PON, μg/kg) were used as phytoplankton biomass is a component of these
values, and they inform about cellular nutrient status, which also affects the cellular carbon : chl ratio.
Water temperature T (°C) and in situ photosynthetically active radiation (PAR) (Ein m�2 d�1) are also known
to affect cell stoichiometry via physiological and genetic adaptation. PAR was estimated using astronomical
formulae, a simple cloud transmission model, and a log linear profile model for attenuation (Text S4).
Estimates within themixed layer were averaged over themixed layer to give the daily average PAR experienced
by mixing cells.

The gridded predictor variables were first normalized via a simple Box-Cox pretransform; this tended to
improve predictive potential and the performance of the hat matrix criterion (see below; no transform
was deemed necessary for T). The predictors were also standardized (subtracting the sample mean and
dividing by the standard deviation) to facilitate a ranking of their impact on the response. We then fitted by
maximum likelihood the model

yi′ ¼ b0 þ
Xm
j¼1

bjxij þ ηi (2)

where y′ is the Box-Cox transform of the gridded phytoplankton carbon data (n= 358), x are the standardized
predictors (m=20), and η~N 0; σ2η

� �
. Plots of residuals versus x values showed no obvious evidence of
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neglected nonlinearity. The model was applied to predict gridded phytoplankton carbon data from fall
1989 through fall 2011, using the unbiased back transform (Text S3). SEs in grid predictions were calculated
by a parametric bootstrap technique that accounted for the error correlation formally neglected in equation (2)
(Text S5), and CIs for 3 year means were derived from percentiles of the bootstrap ensemble of depth and
time averages. The reconstructed series were then analyzed as described above, treating the predictions as
unbiased data in equation (1). To calculate euphotic averages, we considered it safe to raise the maximum
allowed extrapolation toward the surface to 45m, allowing one extra datum in winter 2001 when the average
MLD was 101m.

Given the number of predictors, and the fact that several are somewhat correlated, equation (2) is unlikely
to be a robust extrapolator. This was not a severe limitation, however, because the prediction problem was
largely interpolative, with only ~5% of grid prediction points classed as extrapolations by the hat matrix
criterion [Montgomery et al., 2012]. As a safeguard, these extrapolation points were excluded from all
subsequent analyses. We also considered the use of model selection to obtain a more robust predictive
model [e.g., Burnham and Anderson, 2002]. A simple stepwise regression algorithm was able to improve
Akaike’s Information Criterion and the Bayesian Information Criterion by reducing m to 8–12; however, this
did not generally improve the cross-validation skill (skill in predicting profiles withheld from the fit) when the
variability in selected subsets was accounted for (Table S4), and the model selection did not always reduce
the number of extrapolation points. In any case, very similar trends and multiannual shifts were obtained
whether or not model selection was applied and whether or not the extrapolation points were excluded
(Figures S11 and S12). We attribute this insensitivity to the interpolative nature of the predictions and the
subsequent averaging of prediction errors over depth and time.

2.4. Explanatory Analyses

In order to explain the reconstructed variability, we consider various “biomass” and “explanatory” variables,
as averages over seasons and (where applicable) the euphotic depth. Biomass variables include chlorophyll a
(ChlA, ng/kg), primary productivity (PP, mg C m�3 d�1), and phytoplankton carbon as measured by the
original data (PC, etc.) and by the reconstructed data (PCr, etc.). Explanatory variables focus on nutrient
supply, light shock, and grazing pressure as potential causal mechanisms. Dissolved nutrient concentrations
(N +N, PO4) are generally expected to increase with nutrient supply rates, though this may be counteracted
by the stimulation of biological uptake. The molar ratio POC : PON (POCN) should increase with increasing
N limitation at the community level [e.g., Karl et al., 2001] (we present averaged ratios, but ratios of averages
gave very similar results; particulate phosphorus series were too short to allow long-term POCP analysis).
Heat content (T) should decrease with increasing vertical exchange (whether by convective overturn, small-
scale “diffusive”mixing or eddy/submesoscale advection), and hence decrease with increasing nutrient supply.
Surface wind speed WS (ms�1, measured at Bermuda Airport) should correlate positively with nutrient supply
by vertical mixing [Marra et al., 1990] and eddy-wind interactions [McGillicuddy et al., 2007; Mahadevan et al.,
2008]. Mixed layer depth as defined above (MLD1) should reflect the intensity of the deepest mixing events
(convective overturn), and hence both nutrient supply and light variability. We also consider a 0.02°C variable- σt
criterion relative to 2.5m depth (MLD2≈mixing layer depth [Brainerd and Gregg, 1995]) which should reflect the
intensity of near-surface diurnal mixing. As further measures of vertical exchange/nutrient supply, we consider the
density stratification index Δρ≡ ρ200� ρ0 (kgm

�3) [Behrenfeld et al., 2006; Lozier et al., 2011] and the seasonal
North Atlantic Oscillation (NAO) index of Hurrell and Deser [2009]. This latter measures a mode of climate
variability in the Northern Hemisphere that influences the frequency of winter storm arrival at the BATS site
[Bates, 2001; Lomas et al., 2010a; Casey et al., 2013]. Finally, the total mesozooplankton biomass Z (>200μm,
units mg C m�3) is considered as a measure of grazing pressure, acknowledging that our analyses are limited
by the lack of regular biomass or grazing rate data for nanozooplankton/microzooplankton [Lessard and
Murrell, 1998]. To limit the effect of outliers, truly exceptional N+N data for 2010 and 2011 (Figure S5q) were
excluded from the analyses. Lack-of-fit tests suggested that the time series model was reasonable for most
variables except MLD1,2 which failed the Koenker-Bassett test (p< 10�3) due to strong seasonality in the
residual variance; this was remedied by replacing the Box-Cox transform with a pretransform to seasonal
z-scores for MLD1,2 [Corno et al., 2007].

Time series models were first fitted to the biomass and explanatory variables, including the multiannual
shift as well as the seasonal and trend effects. We then investigated year-to-year interannual variability by
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testing zero-lag Pearson cross correlations between the fit residuals for biomass and explanatory variables.
These residuals were studentized and prewhitened to avoid exaggerated significance due to neglected
autocorrelation [Chatfield, 1975] (similar results were obtained using the corrected degrees of freedom
method of Pyper and Peterman [1998]). Shift and trend effects were then tested for significance via t tests of
the hypotheses β5 = 0 and β1 = 0, respectively, and CIs were computed for S and T. Analyses were repeated
for individual seasons by subsetting residuals or, for the shift and trend variability, by refitting the model
without seasonal effects to single-season subsets of the data. For these latter fits, where n~22, simulations
suggested that ρ may be poorly constrained and the bias undercorrected, yielding somewhat unconservative
t tests and CIs at high true values of ρ (Figures S1 and S2). However, similar application results were obtained
with the autocorrelation neglected (setting ρ= 0), and subsequent Durbin-Watson tests rarely cast doubt on
the significant effects.

3. Results and Discussion
3.1. Analysis of the Original Time Series

In terms of 3 year means, the original phytoplankton carbon data show significant increases since 2004 in
Prochlorococcus and Synechococcus carbon (ProC and SynC, Figures 1a and 1b) and a decrease in eukaryote (algal)
carbon (EukC, Figure 1c), a heterogeneous group thought to consist largely of prasinophytes, pelagophytes,
and haptophytes [Lomas and Bates, 2004]. The biomass variability appears to result less from changes in cell
numbers (Figures 1d–1f) than from changes in carbon per cell (Figures 1g–1i), which for the prokaryote groups
has roughly doubled since 2004. Fitting the time series model with seasonal and trend effects reveals a
significant decrease in EukC (Figure 1c), but otherwise the shortness and autocorrelation of these series prohibit
trend significance. Significant trends are, however, identifiable in the biomass predictor variable time series,
which are over 3 times as long (Text S6).
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Figure 1. Time series of group phytoplankton data for (a, d, g) Prochlorococcus, (b, e, h) Synechococcus, and (c, f, i) eukaryote
groups in terms of carbon concentration (Figures 1a–1c), cell numbers (Figures 1d–1f), and carbon (Figures 1g–1i):
cell, showing seasonal and 0–140m average data (black dots) and 3 year running means (blue lines, envelopes are 95%
CIs derived from the subseasonal sampling variance). P values are for the trend significance (bold< 0.05).
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3.2. Reconstruction of Phytoplankton Carbon Data

The multiple regression model (equation (2)) has a modeling efficiency (ME) of 0.72–0.90 with respect to the
fitted depth-resolved (PC, ProC, SynC, and EukC) data (Table 1). These can be considered “general R2” values,
evaluated on the untransformed scale (ME= 1 � SSR/SSD with SSR the sum-of-squared residuals and
SSD/(n� 1) the sample variance [Stow et al., 2009]; adjusting for degrees of freedom reduces ME by ~0.01). ME
remains high when considering euphotic averages (Table 1). However, a stronger and more relevant test for
our purposes is to compare predicted euphotic averages with data from single profiles withheld from the fit.
Aggregating results over all ~30 such cross-validation tests gives MEs of 0.48–0.68 and root-mean-square errors
17–50% of sample mean values (Table 1).

Significant predictors from a bootstrap test reflect known pigment associations in some cases, e.g., zeaxanthin
and chl b are signature pigments for Prochlorococcus and thus have strong positive effects on ProCr (where the
“r” denotes “reconstructed”); chl b is absent in Synechococcus and thus has a negative effect on SynCr; chl c1 + c2
and 19′-butanoyloxyfucoxanthin are mostly found in eukaryote cells and thus have strong positive effects on
EukCr [Veldhuis and Kraay, 2004; Higgins et al., 2011]. Other significant predictors are, however, less intuitive and
likely reflect correlations among predictor variables and the underlying species abundances.

The model closely reproduces vertical profiles of temporal means and standard deviations (Figure 2), including
the vertical niche separation between themore shade-adapted Prochlorococcus and themore surface-dwelling
Synechococcus/eukaryote species. A similar niche separation over seasons, with ProC blooming in Fall and
SynC/EukC blooming in Winter, is also reproduced (Figure 3). Time series for each depth level show a good fit

Table 1. Data Reconstruction Models for Phytoplankton Carbona

Model ME ME hiz MEcv hiz %Ecv hiz Significant Predictors

PCr 0.90 0.82 0.68 17 Diad(+), PAR(+), N +N(�), Peri(+)

ProCr 0.79 0.72 0.53 37 ZeaL(+), ChlB(+), BFuc(+), T(+), Allo(�), Diad(�), PO4
(+), ABC(+), Diat(�)

SynCr 0.76 0.78 0.48 50 ChlA(+), ChlB(�), C12(�), PAR(+), Diad(+), N +N(�), T(�), Allo(+), PON(+)

EukCr 0.81 0.82 0.66 31 C12(+), BFuc(+), PAR(+), Diad(+), ZeaL(�), PO4
(�), ChlB(+), Peri(+), Allo(+)

aME is the modeling efficiency or general R2 value (ME= 1� SSR/SSD with SSR the sum-of-squared residuals and SSD/
(n � 1) the sample variance on the untransformed scale). ME hiz is the modeling efficiency with respect to euphotic
averages (0–140m), and MEcv hiz is the same efficiency with respect to cross-validation data (aggregating over 30
leave-one-profile-out cross validations). %E cv hiz is the root-mean-square error (on the untransformed scale) between
predicted and cross-validation euphotic averages, as a % of the sample mean. Significant predictors are regressor variables
with coefficients significant at the 95% level (bootstrap test, Text S5), in order of decreasing impact on the response, with
superscripts denoting the sign of the effect. C3= chlorophyll c3, C12= chlorophylls c1+ c2, Peri =peridinin, BFuc=19′-buta-
noyloxyfucoxanthin, Fuco= fucoxanthin, Diad=diadinoxanthin, Diat = diatoxanthin, Allo= alloxanthin, ChlB= chlorophyll
b, ChlA= chlorophyll a, ABC= αβ-carotene (α-carotene+ β-carotene), ZeaL= zeaxanthin+ lutein, PON=particulate organic
nitrogen, N+N=nitrate+nitrite, PO4=phosphate, PAR=daily mean photosynthetically active radiation experienced by
cells, and T= temperature.
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within each layer and a plausible variability
beyond the data (Figure 4 shows EukCr as an
example; see Figures S6–S8 for other groups and
tables in the supporting information for
numerical values with uncertainties). The skill
statistics in Table 1, the data fit in Figures 2–4,
the bootstrap prediction SEs in Figure 4, and the
low levels of extrapolation implied by the hat
matrix criterion all support the reconstruction
model as a robust and low-bias interpolator.
The model predictions prior to 2004 are also
found to be broadly consistent with earlier flow-
cytometry data [DuRand et al., 2001], allowing
for potential biases due to inconsistencies in the
measurement methods (see Text S7).

3.3. Analysis of the Reconstructed
Phytoplankton Carbon Time Series

Fitting equation (1) with trend and seasonal
effects to the reconstructed euphotic averages

reveals a significant increasing trend in PCr and weakly significant increases in ProCr and EukCr (Figure 5).
Three year means show significant multiannual variability, with ProCr and SynCr decreasing in the late 1990s
and increasing from the mid-2000s, while EukCr does the opposite. To measure changes in community
structure, we analyze the time series of euphotic-average group carbon as a % of euphotic-average total
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phytoplankton carbon (to guarantee estimates< 100%, we sum over groupmodels rather than using the PCr
model). These group fractions show no significant long-term trends (Figure 6), but their 3 year means show
strong multiannual variability, with the eukaryote fraction varying between ~70% during a eukaryote-
dominated “phase” (1998–2005) and ~45% during prokaryote-dominated phases (1990–1997, 2006–2012,
Figure 6c). These results are robust to whether or not model selection is applied and to whether or not
extrapolation points are excluded (Figures S11 and S12). Moreover, the reconstruction reproduces a
significant (p= 0.04) decreasing trend in the original EukC : PC data since 2004 (see Figure 6c).

3.4. Explaining the Long-Term Variability in Phytoplankton Biomass

We seek to explain group biomass variability on three timescales: interannual/residual variability (mainly year
to year), multiannual shifts (see Figure 6c), and long-term (22 year) trends. Interannual variability in Sargasso
Sea phytoplankton abundance is often explained by variations in nutrient supply [Bates, 2001; Oschlies, 2001;
Follows and Dutkiewicz, 2002; Lomas and Bates, 2004; Krause et al., 2009; Lomas et al., 2010a, 2013; Lozier et al.,
2011; Patara et al., 2011]. We argue, however, that nutrient supply alone may not suffice to explain the
variability in community structure. Indeed, on the seasonal scale (see Figure 3), the winter blooms of
Synechococcus and eukaryote species may be explained by nitrate supply from convective mixing, but the
winter minima in Prochlorococcus abundance are probably best explained by mixing-induced light shock
[DuRand et al., 2001; Malmstrom et al., 2010; Casey et al., 2013], although temperature changes, grazing, viral
lysis, and copper toxicity may also play a role [DuRand et al., 2001;Mann et al., 2002; Parsons et al., 2012; Casey
et al., 2013]. Compared to Synchecococcus, the photophysiology of Prochlorococcus has less resistance to
photoinactivation and oxidative stress [Mella-flores et al., 2012] and slower rates of repair after photoinhibition
[Six et al., 2007; Mella-flores et al., 2012], resulting in greater vulnerability to light shock, especially in low-light
adapted ecotypes [Six et al., 2007; Malmstrom et al., 2010].
3.4.1. Interannual/Residual Variability
Consider first the residuals correlations of explanatory variables with chl a and PP, for which long (n~90) series of
original data are available (Table 2). Recall that seasonal, multiannual shift, and trend effects have all been
removed by fitting the time series model. The strongest correlations over all seasons are with mesozooplankton
abundance (Z) (r=0.3–0.4, p< 0.05) and suggest bottom-up control via food supply rather than top-down
control via grazing pressure. This is consistent with gut content analyses which show that phytoplankton can be a
significant food source even for the larger (>2mm) mesozooplankton, at least during winter/spring
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[Schnetzer and Steinberg, 2002]. It also agrees
with observations that mesozooplankton
grazing control is highly seasonal and never
strong: Roman et al. [1993] measured grazing by
>200μm zooplankton on >2μm phytoplankton
as 2 and 57mg C m�2 d�1 in August and
March/April, amounting to 1% and 17% of total
primary production during thosemonths [Malone
et al., 1993]. Strong negative correlations are also
observed with heat content (T) and stratification
index (Δρ) in winter (r~�0.4 to �0.7, p< 0.05).
The fact that both chl a and PP show these
correlations suggests a growth response to
nutrients supplied by deeper (and cooler and
denser) waters, rather than only mixing-induced
photoadaptation. Correlations with N+N and
PO4 are positive but generally weaker, possibly
due to undersampling and/or the decoupling of
nutrient uptake from carbon assimilation,
allowing PP to remain high after rapid
consumption of vertically imported nutrients
[Mongin et al., 2003]. There are, however,moderate
springtime correlations between PP and N+N
(r=0.47, p< 0.05) and POCN (r=�0.43, p=0.05),
suggesting nitrogen limitation. There is also a
strong correlation between chl a and PO4 in fall
(r=0.53, p< 0.01), perhaps reflecting a growth
response of deeper-dwelling phytoplankton with
high chl a: carbon ratios and minor contributions
to PP (r is insignificant for the 0–70m layer).
Despite the implied nutrient supply, MLD does
not significantly correlate with PP for any or all
seasons, possibly due to undersampled MLD
fluctuations [Lomas et al., 2009] and/or
photodamage of cells mixed toward the surface
then trapped in the C14 incubation bottles. There
are, however, positive correlations between
MLD1,2 and chl a, especially in summer (r=0.48,
p< 0.05), likely reflecting photoadaptation to

reduced average light levels. Significant winter correlations between the NAO index and chl a (r=�0.45) and
PP (r=�0.58) are consistent with increased nutrient supply during low-NAO winters [Bates, 2001].

Correlation analyses with the original carbon data (PC, etc.) are severely limited by sample size (n~30 or 7–8
within seasons). Nevertheless, highly significant (p< 0.01) correlations are observed between ProC and (T, Δρ)
(r~0.5), especially in winter (r~0.9) when a strong negative correlation with MLD2 is also observed (r~�0.9).
These are consistent with the mixing-induced light shock mechanism proposed above to explain the seasonal
minima. We also observe significant (p< 0.05) negative correlations between EukC and T (r=�0.38), especially
in winter (r=�0.81), and a positive correlation with PO4 over all seasons (r=0.37), consistent with growth
responses to increased nutrient supply by vertical exchange. Although the only significant correlation with
mesozooplankton (Z) is for SynC in fall (r=0.83, p< 0.05), there are marginal winter correlations with EukC
(r=0.76, p=0.08) and with ProC (r=�0.80, p=0.05), consistent with bottom-up control via food supply from
the larger algae which flourish in conditions unfavorable to Prochlorococcus.

Residual correlations with the reconstructed data (not shown) are of questionable significance because some
of the explanatory variables were used as predictor variables in the reconstruction. They are nevertheless
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coherent with the original data analysis: EukCr is stimulated, and ProCr suppressed, in years with strong vertical
exchange (especially during winter/spring), and correlations with Z are consistent with bottom-up control by
the larger phytoplankton. We also considered correlations restricted to the prokaryote phases (prior to 1997
and after 2006) and to the eukaryote phase (between 1998 and 2005) for the variables (ChlA, PP) with sufficient
data coverage. Compared to the unrestricted analysis, additional significant spring/summer correlations are
observed, despite the reduced sample size, between ChlAPro and (PO4, T) and between PPPro and (T, Z, N+N,
POCN), suggesting a stronger coupling to spring/summer nutrient supply during the prokaryote phases
(Table 2). Correlations during the eukaryote phase are limited by sampled size, but the springtime correlation
of ChlAEuk with MLD1 may reflect mixing-induced photoadaptation (see below).

Table 2. Significant Interannnual/Residual Correlations Between Phytoplankton Biomass and Explanatory Variablesa

Variable All Seasons Winter Spring Summer Fall

ChlA Z(+), T(�), PO4
(+), MLD2

(+) T(�), NAO(�), Δρ(�) – MLD1
(+) PO4

(+), Z(+)

PP T(�), Z(+), N +N(+),
WS(+), NAO(�)

Δρ(�), T(�), NAO(�) N +N(+) – –

PC – – – – –
ProC T(+), Δρ(+) T(+), MLD2

(�), Δρ(+) NAO(�) – –
SynC – – – Δρ(�) Z(+)

EukC T(�), PO4
(+) T(�) – – NAO(+)

ChlAPro Z(+), T(�), PO4
(+) – PO4

(+), T(�) MLD1
(+) PO4

(+)

PPPro T(�), Z(+), N+N(+),
WS(+), POCN(�), Δρ (�)

Δρ(�), NAO(�), T(�),
PO4

(+), WS(+)
T(�), Z(+), N +N(+),

POCN(�)
N+N(+) –

ChlAEuk – – MLD1
(+) Z(+) Δρ (+)

PPEuk – – – PO4
(�) –

aSignificant zero-lag Pearson correlations are shown (p< 0.05, bold where p< 0.01) between subsetted prewhitened
residuals from time series model fits to data from all seasons, including seasonal, multiannual shift, and trend effects.
Correlations are ordered by decreasing magnitude, with signs indicated by superscripts. Biomass variables include
chlorophyll a (ChlA), primary productivity (PP), total phytoplankton, Prochlorococcus, Synechococcus, and eukaryote
carbon (PC, ProC, SynC, and EukC) and the (ChlA and PP) restricted to the prokaryote/eukaryote phases (ChlAPro/Euk and
PPPro/Euk). Explanatory variables include nitrate-plus-nitrite (N+N), phosphate (PO4), particulate organic carbon : nitrogen
(POCN), water temperature (T), surfacewind speed at Bermuda Airport (WS), mixed layer depth via a 0.2°C or 0.02°C variable
sigma-t criterion (MLD1 and MLD2), density stratification between 0 and 200m (Δρ), the North Atlantic Oscillation index
(NAO), and the total mesozooplankton biomass (Z). Variables are averages over seasons and where applicable the surface
0–140m layer (Z is an average over a tow depth of 150–200m [Steinberg et al., 2012]).

Table 3. Multiannual Shifts in Phytoplankton Biomass and Explanatory Variablesa

All Seasons Winter Spring Summer Fall

Biomass Variables
ChlA 10 (�9 to 32) 10 (�22 to 42) �5 (�32 to 28) 17 (�2 to 37) 15 (�20 to 57)
PP 9 (�8 to 28) �2 (�37 to 52) �3 (�29 to 28) 18 (�29 to 54)LB 25 (�9 to 62)
PCr �6 (�19 to 9) �11 (�30 to 7) �9 (�35 to 26) 0 (�17 to 15) �17 (�27 to �4)*
ProCr �48 (�62 to �31)* �40 (�68 to 19) �59 (�74 to �39)* �55 (�78 to �22)* �34 (�52 to �11)*L

SynCr �45 (�59 to �21)* �54 (�65 to �39)* �42 (�69 to 14) �39 (�62 to 8) �58 (�67 to �38)*
EukCr 67 (34 to 110)* 43 (18 to 74)* 75 (21 to 170)* 92 (44 to 153)* 47 (22 to 85)*

Explanatory Variables
N+N �19 (�41 to 8) 21 (�52 to 126) 10 (�39 to 77) �54 (�67 to �34)*L �24 (�53 to 22)
PO4 �14 (�37 to 19) 7 (�30 to 64)L �4 (�38 to 49) �41 (�51 to �6)* �17 (�47 to 43)
POCN 24 (7 to 46)* 16 (�9 to 40) 29 (3 to 55) 15 (�4 to 46) 28 (�6 to 66)KB

T (°C) 0.3 (0.0 to 0.6)KB 0.4 (�0.2 to 1.2) 0.2 (�0.2 to 0.7) 0.5 (0.1 to 0.9) 0.1 (�0.4 to 0.6)
WS 2 (�2 to 7) 6 (�3 to 21) �3 (�12 to 6) 3 (�3 to 9) 4 (�7 to 14)
MLD1 11 (�33 to 58) �25 (�47 to 8)LB 41 (8 to 79)* 14 (�9 to 37) �9 (�25 to 8)
MLD2 17 (�29 to 62) �34 (�60 to 10) 64 (5 to 152) 19 (�15 to 64)LB �9 (�18 to 1)
Δρ �2 (�6 to 2) 3 (�11 to 18) �8 (�14 to �2)* �1 (�5 to 3) �1 (�7 to 5)LB

NAO �0.1 (�1.1 to 0.8) �0.6 (�2.4 to 0.9)LB 0.7 (�0.8 to 2.3) �0.9 (�2.0 to 0.3) 0.3 (�2.2 to 2.9)
Z 28 (10 to 53)* 49 (�3 to 120) 28 (�12 to 94) 34 (�6 to 80)LB 3 (�23 to 34)

aAll shifts are % changes except for T (units °C) and NAO (dimensionless) (see Table 2 for variable abbreviations). Ranges
show 95% CIs, and font indicates the shift significance (italics where 0.05< p< 0.15, bold where p< 0.05, bold with asterisk
where p< 0.01). Superscripts denote failed tests of time series model adequacy (p< 0.05): L = Lilliefors test of normality,
KB=Koenker-Bassett test for homogeneity of variance, and LB= Ljung-Box test for adequacy of the AR1 correlation model.
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3.4.2. Multiannual Shifts
Multiannual shifts in chl a, primary productivity (PP), and reconstructed total carbon (PCr) are generally weak
and insignificant (Table 3). By contrast, strong multiannual shifts are observed in all reconstructed group
biomasses in all seasons individually and together. The reconstructed shift in community structure (Figure 6)
therefore results from significant decreases in both ProCr and SynCr as well as a significant increase in
EukCr (Figures 5b–5d).

One hypothesis to explain this shift is an overall increase in nutrient supply during the eukaryote phase
(1998–2005). There is, however, little evidence in the explanatory variables to support this hypothesis
(Table 3). During the eukaryote phase, dissolved inorganic nutrients (N+N, PO4) show an overall (nonsignificant)
decrease, with the decrease most pronounced in summer. As discussed above, nutrient concentrations may
drop with an increase in nutrient supply due to the stimulation of biological uptake. However, the observed
positive residual correlations between (chl a, EukC) and (N+N, PO4) (see above) suggest that, for the seasonal
averages considered here, the growth response is not strong enough to reverse the positive correlation between
(N+N, PO4) and nutrient supply. Moreover, the significant increase in particulate organic carbon : nitrogen
(POCN) suggests an increase in community nitrogen stress, hence a reduction in nutrient supply, during the
eukaryote phase (Table 3 and Figure 7a), and no significant increases are observed in PP (Table 3) or the bulk
growth rate μ=PP/PCr (not shown). Furthermore, an overall increase in nutrient supply is not supported by the
physical variables. Winter mixed layer depths were significantly shallower during the eukaryote phase
(Figures 8a and 8d), suggesting a reduction in annual nutrient supply by convective entrainment, which was the
dominant supply mechanism in eddy-resolving simulations [Oschlies, 2002; McGillicuddy et al., 2003]. A simple
estimate of winter N+N supply using the product of the maximum winter MLD1 (as a monthly average, similar
results using raw values) and the previous fall N +N averaged over the same depth supports a
roughly threefold reduction during the eukaryote phase (Figure 7b; cf. Siegel et al. [1999] mean estimate of
0.17mol Nm�2 yr�1 for the years 1989–1995). Heat content (T) was also higher during the eukaryote phase
(Table 3 and Figures S5t and S5u in the supporting information), shifts in wind speed (WS), stratification index
(Δρ) and NAO index were insignificant (Table 3), and surface geostrophic + Ekman velocity estimates [Bonjean
and Lagerloef, 2002, not shown] did not support a shift in contributions from horizontal advection (though
this neglects changes in lateral gradients). Finally, even if nutrient supply were increased (e.g., by vertical
migration, see Fawcett et al. [2014]), this alone would not explain the reduced prokaryote biomass (Figures 5b
and 5c), nor perhaps the factor of 2 lower carbon per cell (Figures 1g and 1h). Laboratory experiments on
cultured strains have found that prokaryote carbon per cell may increase with phosphorus stress, perhaps
due to an inability of undernourished cells to replicate chromosomes and divide [Bertilsson et al., 2003];
however, flow-cytometry data for field samples from the Sargasso Sea have shown small increases in
prokaryote forward light scatter (hence cellular carbon) with nutrient amendment [Worden and Binder, 2003].

We suggest that the shift in community structure may have been largely driven by a shift in the seasonality of
mixing. Mixed layer depths show no significant all-season shifts, but there are strong decreases in winter
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MLD1,2 and increases in spring MLD1,2 (Table 3 and Figure 8), resulting in significantly reduced winter-spring
shoaling (Figures 8c and 8f). The weak significance of some of these shifts may reflect data noise due to the
undersampling of high-frequency variability [Lomas et al., 2009] (SEs in seasonal means are mostly 20–30m).
Increased mixing in spring, when surface irradiances are ~60% higher than in winter, may have exacerbated
light shock to unsustainable levels for Prochlorococcus, causing the crash in ProC during 1997 (Figures 5b
and 8b) and suppressing biomass in subsequent years, possibly with interannual effects on seed populations.
This would also explain the reduction in Prochlorococcus carbon per cell (Figure 1g), since the larger, low-light
adapted ecotypes are more prone to light shock mortality. It is curious that we observe similar depressions
of Synechococcus biomass (Figure 5c) and carbon per cell (Figure 1h), as these prokaryotes should be substantially
more resistant to light shock (see above). Many eukaryotes (algae), however, can thrive in fluctuating light
environments, thanks to efficient xanthophyll cycle photoprotection mechanisms, thought to be more
powerful than those of cyanobacteria [Brunet and Lavaud, 2010; Kulk et al., 2011]. Such algae may in fact have
benefited from higher average light levels in winter (due to reduced mixing), a more even seasonal pattern of
nutrient supply (albeit less in total), increased irradiance during nutrient supply events, and less sustained
surface exposure in spring. Possible evidence of a light shock response in the eukaryote community is provided
by the time series for the pigments diadinoxanthin and diatoxanthin which are associated with xanthophyll
cycles in some algal cells (Figures S5h and S5i). Diadinoxanthin shows a highly significant increase in 3 year
mean values around the onset of the eukaryote phase, although the anomaly relaxes by winter 1999 (Figure
S5h). Diatoxanthin shows a highly significant positive multiannual shift (p< 0.001, Figure S5i), although the
shift is not significant when considering the ratio to EukCr and may thus only reflect the overall increase in
eukaryotic biomass. Also, the shift in mixing seasonality may not have favored eukaryotes with permanently
higher xanthophyll cycle pigment content but rather those with the capacity to vary their cellular content of
these pigments in response to springtime mixing through strong vertical light gradients [Polimene et al., 2013].

Regarding top-down control, there is no direct evidence that the increase in EukC resulted from reduced
grazing pressure; rather, mesozooplankton biomass (Z) appears to have increased during the eukaryote
phase (Table 3). It is however possible that enhanced carnivory by mesozooplankton reduced the grazing
pressure from <200μm microzooplankton/nanozooplankton, which were likely the dominant grazers, at
least during summer [Roman et al., 1993; Lessard and Murrell, 1998] (note also that the largest relative increase
in EukC occurred in summer, Table 3). On the other hand, the hypothesis of top-down control would then
demand a top-down explanation for the increased Z (see discussion in Steinberg et al. [2012]). Grazing on
algae may also have reduced due to lower food quality driven by reduced nutrient supply (see above),
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though again this would not explain the increased Z. Grazing on ProC/SynC may have increased due to
reduced algal food quality or increased microzooplankton/nanozooplankton, possibly fueled by the increased
EukC. Grazing on Sargasso Sea prokaryotes has been observed to increase with food quality [Worden and Binder,
2003], but this would not appear consistent with the observed decreases in carbon per cell (Figures 1g and 1h)
and the apparent reduction of nutrient supply (see above). Alternatively, the increased algal biomass and
reduced nutrient supply may have increased grazing pressure from mixotrophs: algal bacterivory is widely
observed in the Atlantic Ocean [Hartmann et al., 2012], algal grazing of picocyanobacteria has been observed in
the Sargasso Sea [Arenovski, 1994; Sanders et al., 2000], and [Frias-Lopez et al., 2009] identified prymnesiophytes
—likely the dominant algae at BATS—as major grazers of picocyanobacteria in the surface waters of the
Pacific Ocean. However, if mixotrophy were the main cause of the negative prokaryote shifts, we would
expect these shifts to be more pronounced in the nutrient-depleted surface waters [Arenovski, 1994]. In fact,
analysis of the time series at individual depths reveals an increasing trend with depth to 140m in the
magnitude of the estimated prokaryote shift (linear regression, p= 0.06/0.07 for ProC/SynC), which is more
consistent with the mixing-induced light shock hypothesis. On the other hand, an increase in eukaryote
mixotrophy might better explain the weakened coupling between (ChlA and PP) and nutrient supply proxies
(Table 2), and perhaps also the strong negative shift in SynCr (Figure 5c).
3.4.3. Long-Term Trends
Highly significant increasing trends are observed in chl a and most carbon groups (Figures 5 and S5l and
Table 4), but biomass fractions show no significant trends (Figure 6; these results are insensitive to whether or
not a shift effect is fitted). Primary productivity has, however, only weakly increased, suggesting a decrease in
the bulk phytoplankton growth rate, which is confirmed by the time series for μ= PP/PCr (T=�31%, p= 0.01).
This may reflect a change in eukaryote community structure, since there is little evidence of decreasing
nutrient supply (Table 4) or surface irradiance (not shown), and biogenic silica—a proxy for diatom abundance
[Krause et al., 2009]—shows a strongly decreasing trend (T=�62%, p=0.006).

To explain the increasing biomass trends, nutrients and heat content show no significant all-season trends nor is
there evidence of an increase in the peak mixing events which set the mixed layer depth MLD1 (Table 4) or the
annual convective nitrogen supply (Figure 7b). However, we do observe a significant decreasing trend in POCN
(Figure 7a), suggesting a gradual relief of nitrogen stress. We also observe significant increasing trends in surface
wind speed (WS) [cf. Bates, 2007] and winter mixing layer depth MLD2 (Figure 8d), supporting a gradual increase
in nutrient supply from moderate, wind-driven convective and diffusive events [Lomas et al., 2010a, 2013]. The
increase in the rate of supply during such events may have been small compared to uptake losses except when

Table 4. Trend Increases in Phytoplankton Biomass and Explanatory Variablesa

All Seasons Winter Spring Summer Fall

Biomass Variables
ChlA 56 (21 to 111)* 69 (10 to 127)* 58 (7 to 166) 10 (�16 to 47) 69 (�10 to 201)
PP 15 (�10 to 41) 45 (�27 to 188) 12 (�23 to 67) 14 (�40 to 81)LB �6 (�37 to 36)
PCr 53 (28 to 89)* 66 (20 to 121)* 63 (5 to 187) 21 (�3 to 57) 30 (16 to 57)*
ProCr 83 (38 to 155)* 0 (�67 to 131) 113 (36 to 231)* 70 (�16 to 255) 91 (39 to 185)*L

SynCr 30 (�16 to 93) 72 (36 to 130)* 34 (�44 to 222) �21 (�61 to 94) 50 (10 to 111)*
EukCr 73 (29 to 135)* 128 (57 to 229)* 105 (3 to 415) 37 (�17 to 129) 26 (�16 to 86)

Explanatory Variables
N+N 23 (�17 to 81) �26 (�76 to 158) �30 (�64 to 44) 112 (31 to 236)*L 80 (�6 to 213)
PO4 22 (�20 to 81) �3 (�45 to 64)L 37 (�27 to 134) �14 (�36 to 22) 30 (�35 to 142)
POCN �20 (�33 to �7)* �11 (�33 to 19) �7 (�25 to 21) �28 (�47 to 11) �27 (�54 to 15)KB

T (°C) 0.1 (�0.3 to 0.4)KB �0.6 (�1.7 to 0.2) �0.1 (�0.8 to 0.4) �0.1 (�0.6 to 0.4) 0.9 (0.2 to 1.5)*
WS 10 (4 to 15)* 9 (�6 to 23) 9 (�4 to 21) 12 (4 to 20)* 9 (�5 to 22)
MLD1 3 (�56 to 57) 25 (�15 to 75)LB �6 (�30 to 27) �6 (�28 to 27) 3 (�17 to 27)
MLD2 85 (27 to 144)* 120 (15 to 300) 33 (�26 to 140) 23 (�30 to 98)LB 21 (6 to 38)*
Δρ 1 (�4 to 7) �13 (�27 to 4) �1 (�10 to 8) 3 (�2 to 8) 9 (2 to 16)LB

NAO �0.7 (�1.8 to 0.5) �2.1 (�4.0 to 0.1)LB �0.5 (�2.5 to 1.8) �0.3 (�1.8 to 1.1) 0.4 (�2.9 to 4.4)
Z 117 (64 to 192)* 170 (50 to 573)* 115 (5 to 535) 89 (�13 to 384)LB 57 (�3 to 163)

aAll trend increases are % changes except for T (units °C) andNAO (dimensionless) (see Table 2 for variable abbreviations).
Ranges show 95% CIs, and font indicates the shift significance (italics where 0.05< p< 0.15, bold where p< 0.05, bold with
asteriskwhere p< 0.01). Superscripts denote failed tests of time seriesmodel adequacy (p< 0.05): L=Lilliefors test of normality,
KB=Koenker-Bassett test for homogeneity of variance, and LB= Ljung-Box test for adequacy of the AR1 correlation model.
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primary productivity was lower in summer/fall, hence the increasing N+N trends only in these seasons (Table 4).
Over the period 1990–2012, a significant decreasing trend is also observed in the winter NAO index (Table 4),
consistent with an increasing frequency (but not necessarily intensity) of storms arriving at the BATS site. Despite
the increases in fall wind speed and mixing layer depth, fall heat content (T) appears to have increased by
around 0.5°C per decade, implying an increase in fall stratification (Δρ also shows a weak positive trend) which
might explain the stronger increase in ProC than in SynC. Mesozooplankton abundance (Z) has also strongly
increased, suggesting bottom-up control on Z, although this trend may also have top-down drivers
[Steinberg et al., 2012] and may have facilitated the phytoplankton increase via predation on smaller grazers.

4. Conclusions

We have analyzed 1990–2012 time series of phytoplankton pigments and group carbon biomass in the
Sargasso Sea, using recent flow-cytometric measurements and a multiple regression approach to reconstruct
carbon concentrations prior to 2004. Year-to-year biomass variations were apparently driven by the intensity
of winter mixing, controlling the supply of nutrients for eukaryote blooms and the severity of Prochlorococcus
minima, and in turn correlated with the winter NAO index. Group carbon time series also showed strong
multiannual variability, with the eukaryote biomass fraction varying from ~45% to ~70% between prokaryote
and eukaryote phases. Surprisingly, the eukaryote phase did not appear to result from an overall increase
in nutrient supply—rather, winter convective entrainment was reduced and annual average nitrogen stress was
elevated during this period. Instead, we hypothesize that a shift in the seasonal pattern of vertical mixing
may have stimulated and restructured the algal community by reducing the seasonality of nutrient supply,
while also suppressing prokaryote populations by exacerbating light shock and grazing mortality. Significant
increasing trends of~+3% per year were observed in both chlorophyll a and total phytoplankton carbon,
apparently fueled by a gradual increase in nutrient supply by moderate, wind-driven mixing events associated
with a decreasing winter NAO index. There was little evidence of trends in eukaryote or prokaryote biomass
fractions, but there was some evidence of long-term changes in the eukaryote community structure.

Understanding the mechanisms that produce long-term variability in plankton biomass is critical if we are to
predict with any confidence the response of the ocean biosphere to climatic variations. The basic response
of increased nutrient supply to the surface Sargasso Sea with negative swings in the NAO appears to be
reproducible in mechanistic models [Oschlies, 2001; Patara et al., 2011; Keller et al., 2012], but it remains to be
seen whether such models can reproduce the observed increasing trends in phytoplankton biomass at the
BATS site. We stress that these 22 year trends do not contradict the evidence from observations [Polovina
et al., 2008; Boyce et al., 2010] and models [Steinacher et al., 2010; Hofmann et al., 2011; Yool et al., 2013] for a
longer-term anthropogenic decline in subtropical gyre productivity due to increasing stratification and
decreasing nutrient supply. They do however underscore the need for longer time series and spatial averaging
in order to separate such climate change signals frommultidecadal variability. The observed multiannual shifts
in community structure may, we suspect, prove a strong challenge for current models to reproduce due to
uncertainties in parameterizing prokaryote photodamage and (possibly mixotrophic) grazing mortality.
These processes could nevertheless be important in determining the structure of future marine planktonic
ecosystems and the fate of nutrients supplied, impacting the balance between rapid recycling and the
transfer of carbon to higher trophic levels or export to depth.

A likely prerequisite of such understanding is an improvement in the global-scale measurement of group
phytoplankton biomass in terms of carbon concentration. Our study suggests that standard in situ measurements,
includingHPLC pigments, temperature, and light levels, may be used to reconstruct group-resolved phytoplankton
carbon data, given adequate direct measurements (e.g., from flow cytometry) to constrain the model. Such
in situ models may then facilitate global remote sensing estimates by increasing calibration and validation
matchups for algorithmdevelopment or by providing second stage estimates after remote sensing of pigments
and other predictor variables [Sathyendranath et al., 2005; Pan et al., 2010; Moisan et al., 2013].
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